

9 September, 2003

Bruce Lewis Environmental Resources Management 2525 Natomas Park Drive, Suite 350 Sacramento, CA 95833

RE: Aerojet RI/FS Work Order: P308047

Enclosed are the results of analyses for samples received by the laboratory on 08/01/03 14:07. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Angelee Cari Project Manager

CA ELAP Certificate #2374

Angelee Care

Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
36D-SB02-10	P308047-01	Soil	08/01/03 07:45	08/01/03 14:07
32D-SB07-5	P308047-02	Soil	08/01/03 09:50	08/01/03 14:07
32D-SB07-10	P308047-03	Soil	08/01/03 10:05	08/01/03 14:07
32D-SB07-30	P308047-04	Soil	08/01/03 11:15	08/01/03 14:07
32D-SB07-35	P308047-05	Soil	08/01/03 11:40	08/01/03 14:07
32D-SB07D-35	P308047-06	Soil	08/01/03 11:40	08/01/03 14:07
32D-SB07-40E	P308047-07	Water	08/01/03 11:50	08/01/03 14:07
32D-SB07-40	P308047-08	Soil	08/01/03 12:05	08/01/03 14:07
32D-SB07-45	P308047-09	Soil	08/01/03 13:00	08/01/03 14:07
36D-SB02-40	P308047-10	Soil	07/31/03 14:06	08/01/03 14:07
36D-SB02D-40	P308047-11	Soil	07/31/03 14:06	08/01/03 14:07

P308047

Environmental Resources Management 2525 Natomas Park Drive, Suite 350 Sacramento CA, 95833 Project: Aerojet RI/FS
Project Number: N/A

Reported: 09/09/03 16:33

Total Petroleum Hydrocarbons as Diesel & others by EPA 8015B Sequoia Analytical - Petaluma

Project Manager: Bruce Lewis

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-5 (P308047-02) Soil S		/03 09:50		08/01/03	14:07		1	<u> </u>		
Diesel Range Organics (C10-C28)	ND	., 00 03 10 0	5.0	mg/kg	1	3080254	08/14/03	08/23/03	EPA 8015B-SVOA	
Surrogate: Octacosane		103 %	52-1	33		"	"	"	"	
32D-SB07-10 (P308047-03) Soil	Sampled: 08/0	1/03 10:05	Received	: 08/01/0	3 14:07					
Diesel Range Organics (C10-C28)	ND		5.0	mg/kg	1	3080254	08/14/03	08/23/03	EPA 8015B-SVOA	
Surrogate: Octacosane		97 %	52-1	33		"	"	"	"	
32D-SB07-30 (P308047-04RE1) S	oil Sampled:	08/01/03 1	1:15 Rece	eived: 08/	01/03 14:0	7				
Diesel Range Organics (C10-C28)	5.2		5.0	mg/kg	1	3080553	08/27/03	08/29/03	EPA 8015B-SVOA	HT-03
Surrogate: Octacosane		80 %	52-1	33		"	"	"	"	
32D-SB07-35 (P308047-05) Soil	Sampled: 08/0	1/03 11:40	Received	: 08/01/0	3 14:07					
Diesel Range Organics (C10-C28)	16		5.0	mg/kg	1	3080254	08/14/03	08/23/03	EPA 8015B-SVOA	
Surrogate: Octacosane		153 %	52-1	33		"	"	"	"	S-02
32D-SB07D-35 (P308047-06) Soil	Sampled: 08	3/01/03 11:4	0 Receive	ed: 08/01/	03 14:07					
Diesel Range Organics (C10-C28)	ND		5.0	mg/kg	1	3080254	08/14/03	08/23/03	EPA 8015B-SVOA	
Surrogate: Octacosane		77 %	52-1	33		"	"	"	"	
32D-SB07-40E (P308047-07) Wat	ter Sampled:	08/01/03 11	1:50 Rece	ived: 08/	01/03 14:07	7				
Diesel Range Organics (C10-C28)	0.052		0.050	mg/l	1	3080087	08/06/03	08/07/03	EPA 8015B-SVOA	В
Surrogate: Octacosane		106 %	54-1	41		"	"	"	"	
32D-SB07-40 (P308047-08) Soil	Sampled: 08/0	01/03 12:05	Received	: 08/01/0	3 14:07					
Diesel Range Organics (C10-C28)	30		5.0	mg/kg	1	3080254	08/14/03	08/23/03	EPA 8015B-SVOA	
Surrogate: Octacosane		156 %	52-1	33		"	"	"	"	S-02

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Petroleum Hydrocarbons as Diesel & others by EPA 8015B Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-45 (P308047-09) Soil	Sampled: 08/01	1/03 13:00	Received	08/01/03	3 14:07					
Diesel Range Organics (C10-C28)	ND		5.0	mg/kg	1	3080254	08/14/03	08/23/03	EPA 8015B-SVOA	
Surrogate: Octacosane		89 %	52-13	3.3		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-5 (P308047-02) Soil	Sampled: 08/01/0	3 09:50	Received:	08/01/03	14:07					
Silver	ND		0.34	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	15000		24	"	"	"	"	"	"	
Arsenic	4.3		0.48	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.8	"	1	"	"	08/11/03	EPA 6010B	
Barium	100		0.48	"	"	"	"	"	"	
Beryllium	0.36		0.048	"	"	"	"	"	"	
Calcium	2400		48	"	"	"	"	"	"	
Cadmium	ND		0.48	"	"	"	"	"	"	
Cobalt	9.4		0.34	"	"	"	"	"	"	
Chromium	41		0.48	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.21	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	57		0.96	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	21000		24	"	"	"	"	"	"	
Mercury	0.13		0.017	"	"	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	1500		120	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	4900		24	"	"	"	"	"	"	
Manganese	330		0.48	"	"	"	"	"	"	
Molybdenum	2.4		0.96	"	"	"	"	"	"	
Sodium	220		24	"	"	"	"	"	"	
Nickel	33		1.4	"	"	"	"	"	"	
Lead	4.4		0.24	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.24	"	"	"	"	"	"	
Selenium	ND		0.48	"	"	"	"	08/22/03	"	
Titanium	660		0.96	"	"	"	"	08/11/03	EPA 6010B	
Thallium	0.098		0.096	"	"	"	"	08/21/03	EPA 6020	
Vanadium	46		0.48	"	"	"	"	08/11/03	EPA 6010B	
Zinc	63		0.96	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-10 (P308047-03) Soil	Sampled: 08/01	/03 10:05	Received	08/01/03	14:07					
Silver	ND		0.32	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	8300		23	"	"	"	"	"	"	
Arsenic	11		0.45	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.5	"	1	"	"	08/11/03	EPA 6010B	
Barium	54		0.45	"	"	"	"	"	"	
Beryllium	0.20		0.045	"	"	"	"	"	"	
Calcium	2000		45	"	"	"	"	"	"	
Cadmium	ND		0.45	"	"	"	"	"	"	
Cobalt	4.6		0.32	"	"	"	"	"	"	
Chromium	18		0.45	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.21	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	32		0.90	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	14000		23	"	"	"	"	"	"	
Mercury	ND		0.019	"	"	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	1100		110	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	3200		23	"	"	"	"	"	"	
Manganese	160		0.45	"	"	"	"	"	"	
Molybdenum	ND		0.90	"	"	"	"	"	"	
Sodium	220		23	"	"	"	"	"	"	
Nickel	16		1.4	"	"	"	"	"	"	
Lead	2.2		0.23	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.23	"	"	"	"	"	"	
Selenium	ND		0.45	"	"	"	"	08/22/03	"	
Titanium	360		0.90	"	"	"	"	08/11/03	EPA 6010B	
Thallium	ND		0.090	"	"	"	"	08/21/03	EPA 6020	
Vanadium	30		0.45	"	"	"	"	08/11/03	EPA 6010B	
Zinc	40		0.90	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-30 (P308047-04) Soil	Sampled: 08/01	/03 11:15	Received:	08/01/03	14:07					
Silver	ND		0.33	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	14000		24	"	"	"	"	"	"	
Arsenic	5.4		0.47	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.7	"	1	"	"	08/11/03	EPA 6010B	
Barium	90		0.47	"	"	"	"	"	"	
Beryllium	0.32		0.047	"	"	"	"	"	"	
Calcium	1400		47	"	"	"	"	"	"	
Cadmium	ND		0.47	"	"	"	"	"	"	
Cobalt	8.9		0.33	"	"	"	"	"	"	
Chromium	31		0.47	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.21	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	34		0.95	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	18000		24	"	"	"	"	"	"	
Mercury	0.065		0.015	"	"	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	1300		120	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	4400		24	"	"	"	"	"	"	
Manganese	320		0.47	"	"	"	"	"	"	
Molybdenum	ND		0.95	"	"	"	"	"	"	
Sodium	150		24	"	"	"	"	"	"	
Nickel	32		1.4	"	"	"	"	"	"	
Lead	4.2		0.24	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.24	"	"	"	"	"	"	
Selenium	ND		0.47	"	"	"	"	08/22/03	"	
Titanium	700		0.95	"	"	"	"	08/11/03	EPA 6010B	
Thallium	0.11		0.095	"	"	"	"	08/21/03	EPA 6020	
Vanadium	42		0.47	"	"	"	"	08/11/03	EPA 6010B	
Zinc	67		0.95	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-35 (P308047-05) Soil	Sampled: 08/0	1/03 11:40	Received	: 08/01/03	14:07					
Silver	ND		0.33	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	32000		240	"	10	"	"	08/27/03	"	
Arsenic	2.2		0.47	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.7	"	1	"	"	08/11/03	EPA 6010B	
Barium	280		0.47	"	"	"	"	"	"	
Beryllium	0.72		0.047	"	"	"	"	"	"	
Calcium	3900		47	"	"	"	"	"	"	
Cadmium	ND		0.47	"	"	"	"	"	"	
Cobalt	14		0.33	"	"	"	"	"	"	
Chromium	20		0.47	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.20	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	43		0.95	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	32000		240	"	10	"	"	08/27/03	"	
Mercury	ND		0.017	"	1	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	750		120	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	4700		24	"	"	"	"	"	"	
Manganese	750		0.47	"	"	"	"	"	"	
Molybdenum	ND		0.95	"	"	"	"	"	"	
Sodium	290		24	"	"	"	"	"	"	
Nickel	26		1.4	"	"	"	"	"	"	
Lead	5.1		0.24	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.24	"	"	"	"	"	"	
Selenium	ND		0.47	"	"	"	"	08/22/03	"	
Titanium	1100		0.95	"	"	"	"	08/11/03	EPA 6010B	
Thallium	ND		0.095	"	"	"	"	08/21/03	EPA 6020	
Vanadium	63		0.47	"	"	"	"	08/11/03	EPA 6010B	
Zinc	85		0.95	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07D-35 (P308047-06) Soil	Sampled: 08	/01/03 11:40	Receive	d: 08/01/0	03 14:07					
Silver	ND		0.33	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	35000		240	"	10	"	"	08/27/03	"	
Arsenic	ND		0.47	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.7	"	1	"	"	08/11/03	EPA 6010B	
Barium	230		0.47	"	"	"	"	"	"	
Beryllium	0.82		0.047	"	"	"	"	"	"	
Calcium	4500		47	"	"	"	"	"	"	
Cadmium	ND		0.47	"	"	"	"	"	"	
Cobalt	14		0.33	"	"	"	"	"	"	
Chromium	5.9		0.47	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.20	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	18		0.95	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	19000		24	"	"	"	"	"	"	
Mercury	ND		0.017	"	"	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	300		120	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	2900		24	"	"	"	"	"	"	
Manganese	680		0.47	"	"	"	"	"	"	
Molybdenum	ND		0.95	"	"	"	"	"	"	
Sodium	220		24	"	"	"	"	"	"	
Nickel	11		1.4	"	"	"	"	"	"	
Lead	4.5		0.24	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.24	"	5	"	"	08/26/03	"	
Selenium	ND		0.47	"	1	"	"	08/22/03	"	
Titanium	610		0.95	"	"	"	"	08/11/03	EPA 6010B	
Thallium	ND		0.095	"	"	"	"	08/21/03	EPA 6020	
Vanadium	38		0.47	"	"	"	"	08/11/03	EPA 6010B	
Zinc	38		0.95	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	Re _j MDL	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-40E (P308047-07) Water	Sampled:	08/01/03 11:50	Recei	ved: 08/0	1/03 14:07	,				
Silver	ND		7.0	ug/l	1	3080149	08/12/03	08/12/03	EPA 6010B	_
Aluminum	ND		200	"	"	"	"	"	"	
Arsenic	ND		5.0	"	"	"	"	08/27/03	EPA 6020	
Boron	ND		40	"	"	"	"	08/12/03	EPA 6010B	
Barium	13		6.0	"	"	"	"	"	"	
Beryllium	ND		1.0	"	"	"	"	"	"	
Calcium	4200		1000	"	"	"	"	"	"	
Cadmium	ND	2.1	10	"	"	"	"	"	"	
Cobalt	ND		7.0	"	"	"	"	"	"	
Chromium	ND		8.0	"	"	"	"	"	"	
Copper	12		6.0	"	"	"	"	"	"	
Iron	ND		300	"	"	"	"	"	"	
Mercury	ND		0.20	"	"	3080171	08/12/03	08/12/03	EPA 7470A	
Potassium	630	570	2500	"	"	3080149	08/12/03	08/12/03	EPA 6010B	J
Magnesium	1200		500	"	"	"	"	"	"	
Manganese	20		10	"	"	"	"	"	"	
Molybdenum	ND		20	"	"	"	"	"	"	
Sodium	1600		500	"	"	"	"	"	"	
Nickel	ND	6.5	30	"	"	"	"	"	"	
Lead	ND		2.0	"	"	"	"	08/26/03	EPA 6020	
Antimony	ND		3.0	"	"	"	"	08/25/03	"	
Selenium	ND		2.0	"	"	"	"	"	"	
Titanium	ND		10	"	"	"	"	08/12/03	EPA 6010B	
Thallium	ND		2.0	"	"	"	"	08/26/03	EPA 6020	
Vanadium	ND	1.8	10	"	"	"	"	08/12/03	EPA 6010B	
Zinc	240		20	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-40 (P308047-08) Soil	Sampled: 08/01	1/03 12:05	Received:	08/01/03	14:07					
Silver	ND		0.32	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	28000		230	"	10	"	"	08/27/03	"	
Arsenic	ND		0.46	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.6	"	1	"	"	08/11/03	EPA 6010B	
Barium	290		0.46	"	"	"	"	"	"	
Beryllium	0.63		0.046	"	"	"	"	"	"	
Calcium	5600		46	"	"	"	"	"	"	
Cadmium	ND		0.46	"	"	"	"	"	"	
Cobalt	11		0.32	"	"	"	"	"	"	
Chromium	8.0		0.46	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.21	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	19		0.93	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	28000		230	"	10	"	"	08/27/03	"	
Mercury	0.017		0.017	"	1	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	320		120	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	3000		23	"	"	"	"	"	"	
Manganese	1300		0.46	"	"	"	"	"	"	
Molybdenum	ND		0.93	"	"	"	"	"	"	
Sodium	390		23	"	"	"	"	"	"	
Nickel	14		1.4	"	"	"	"	"	"	
Lead	4.5		0.23	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.23	"	5	"	"	08/26/03	"	
Selenium	ND		0.46	"	1	"	"	08/22/03	"	
Titanium	1100		0.93	"	"	"	"	08/11/03	EPA 6010B	
Thallium	0.16		0.093	"	"	"	"	08/21/03	EPA 6020	
Vanadium	55		0.46	"	"	"	"	08/11/03	EPA 6010B	
Zinc	45		0.93	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-45 (P308047-09) Soil	Sampled: 08/01	/03 13:00	Received	: 08/01/03	14:07					
Silver	ND		0.32	mg/kg	1	3080076	08/08/03	08/11/03	EPA 6010B	
Aluminum	23000		230	"	10	"	"	08/27/03	"	
Arsenic	ND		0.45	"	5	"	"	08/26/03	EPA 6020	
Boron	ND		4.5	"	1	"	"	08/11/03	EPA 6010B	
Barium	150		0.45	"	"	"	"	"	"	
Beryllium	0.62		0.045	"	"	"	"	"	"	
Calcium	7600		45	"	"	"	"	"	"	
Cadmium	ND		0.45	"	"	"	"	"	"	
Cobalt	18		0.32	"	"	"	"	"	"	
Chromium	11		0.45	"	"	"	"	"	"	
Hexavalent Chromium	ND		0.20	"	"	3080258	08/14/03	08/15/03	EPA 7196A	
Copper	22		0.90	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Iron	33000		230	"	10	"	"	08/27/03	"	
Mercury	ND		0.019	"	1	3080172	08/13/03	08/14/03	EPA 7471A	
Potassium	270		110	"	"	3080076	08/08/03	08/11/03	EPA 6010B	
Magnesium	4400		23	"	"	"	"	"	"	
Manganese	930		0.45	"	"	"	"	"	"	
Molybdenum	ND		0.90	"	"	"	"	"	"	
Sodium	550		23	"	"	"	"	"	"	
Nickel	22		1.4	"	"	"	"	"	"	
Lead	3.5		0.23	"	"	"	"	08/21/03	EPA 6020	
Antimony	ND		0.23	"	5	"	"	08/26/03	"	
Selenium	ND		0.45	"	1	"	"	08/22/03	"	
Titanium	990		0.90	"	"	"	"	08/11/03	EPA 6010B	
Thallium	0.099		0.090	"	"	"	"	08/21/03	EPA 6020	
Vanadium	57		0.45	"	"	"	"	08/11/03	EPA 6010B	
Zinc	52		0.90	"	"	"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Tentatively Identified Compounds by GC/MS Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
36D-SB02-10 (P308047-01) Soil	Sampled: 08/01	03 07:45	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07-5 (P308047-02) Soil	Sampled: 08/01/0	3 09:50	Received:	08/01/03	14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07-10 (P308047-03) Soil	Sampled: 08/01	03 10:05	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07-30 (P308047-04) Soil	Sampled: 08/01	03 11:15	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07-35 (P308047-05) Soil	Sampled: 08/01	03 11:40	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07D-35 (P308047-06) Soi	l Sampled: 08/0	1/03 11:4	0 Receive	d: 08/01	/03 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07-40E (P308047-07) Wa	ter Sampled: 0	8/01/03 11	1:50 Recei	ved: 08/	01/03 14:07	•				
No TICs found	ND		10	ug/l	1	3080097	08/06/03	08/13/03	EPA 8270C	
32D-SB07-40 (P308047-08) Soil	Sampled: 08/01	03 12:05	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
32D-SB07-45 (P308047-09) Soil	Sampled: 08/01	03 13:00	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Tentatively Identified Compounds by GC/MS Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
36D-SB02-40 (P308047-10) Soil	Sampled: 07/31	/03 14:06	Received	08/01/0	3 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
36D-SB02D-40 (P308047-11) Soi	Sampled: 07/3	31/03 14:00	6 Receive	d: 08/01	03 14:07					
No TICs found	ND		300	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
36D-SB02-10 (P308047-01) Soil	Sampled: 08/01	1/03 07:45	Received	: 08/01/03	3 14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND ND	20	330	"	"	,,	,,	"	"	
2,6-Dinitrotoluene	ND ND	13	330	"	"	,,	,,	"	"	
2,0-Dimuoloidelle	ND	13	330							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Second Page Page	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Fluoranthene ND	36D-SB02-10 (P308047-01) Soil	Sampled: 08/01	/03 07:45	Received:	08/01/03	14:07					
Fluorene							3080253			EPA 8270C	
Hexachlorobenzene ND 15 330 " " " " " " " " " " " " " " " " " "	Fluoranthene	ND		330			"				
Hexachlorobutadiene ND		ND					"			"	
Hexachlorocyclopentadiene ND 10 330 " " " " " " " " " " " " " " " " "			15							"	
Hexachlorocytanarian ND 10 17 330 "											
Indeno (1,2,3-cd) pyrene ND					"	"	"	"	"	"	
Sophorone			17		"	"	"	"	"	"	
Solution No. 14 14 15 15 15 15 15 15	Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
2-Methylphenol ND 16 330 " " " " " " " " " " " " " " " " " "	•	ND	14	330	"	"	"	"	"	"	
4-Methylphenol ND 11 330 "							"			"	
Naphthalene	2-Methylphenol	ND	16	330	"	"	"	"	"	"	
2-Nitroaniline	4-Methylphenol	ND	11	330	"	"	"	"	"	"	
No. 1700	Naphthalene	ND	13	330	"	"	"	"	"	"	
4-Nitrobaniline ND 22 1700 " " " " " " " " " " " " " " " " " "		ND	17		"	"	"	"	"	"	
Nitrobenzene ND 16 330 " " " " " " " " " " " " " " " " " "	3-Nitroaniline	ND			"	"	"	"	"	"	
2-Nitrophenol ND 14 330 " " " " " " " " " " " " " " " " " "	4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
4-Nitrophenol ND 23 1700 " " " " " " " " " " " " N-Nitrosodimethylamine ND 16 330 " " " " " " " " " " " " " " " " " "	Nitrobenzene	ND	16	330	"	"	"	"	"	"	
N-Nitrosodimethylamine ND 16 330 """"""""""""""""""""""""""""""""""	2-Nitrophenol				"	"	"	"	"	"	
N-Nitrosodiphenylamine ND 17 330 " " " " " " " " " " " " " " " " " "		ND	23	1700	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine ND 15 330 " " " " " " " " " " " " " " " " " "	N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
Pentachlorophenol ND 12 1700 "	N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
Phenanthrene ND 14 330 "	N-Nitrosodi-n-propylamine	ND		330	"	"	"	"	"	"	
Phenol ND 12 330 "	Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Pyrene ND 12 330 " " " " " " " " " " 1,2,4-Trichlorobenzene ND 15 330 " " " " " " " " " " " " " " " " 1,2,4,5-Trichlorophenol ND 14 330 " " " " " " " " " " " " " " " " " "	Phenanthrene	ND	14	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene ND 15 330 "	Phenol	ND	12	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol ND 14 330 "<	Pyrene	ND	12	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol ND 9.4 330 "	1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol 62 % 11-120 " " " " " Surrogate: Phenol-d6 73 % 16-130 " " " " " Surrogate: Nitrobenzene-d5 74 % 16-126 " " " " " " Surrogate: 2-Fluorobiphenyl 76 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " " "	2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
Surrogate: Phenol-d6 73 % 16-130 " " " " " " Surrogate: Nitrobenzene-d5 74 % 16-126 " " " " " " Surrogate: 2-Fluorobiphenyl 76 % 28-134 " " " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " " " " "	2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: Nitrobenzene-d5 74 % 16-126 " " " " " " Surrogate: 2-Fluorobiphenyl 76 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " " "	Surrogate: 2-Fluorophenol		62 %	11-12	20		"	"	"	"	
Surrogate: 2-Fluorobiphenyl 76 % 28-134 " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " "	Surrogate: Phenol-d6		73 %	16-13	80		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " "	Surrogate: Nitrobenzene-d5		74 %	16-12	26		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " "	Surrogate: 2-Fluorobiphenyl		76 %	28-13	34		"	"	"	"	
•							"	"	"	"	
	Surrogate: Terphenyl-d14			64-11	19		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-5 (P308047-02) Soil	Sampled: 08/01	/03 09:50	Received:	08/01/03	14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND ND	13	330	"	"	,,	"	,,	"	
2,0-Dimirotoruciic	עאו	13	330							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

			D							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-5 (P308047-02) Soil	Sampled: 08/01	/03 09:50	Received:	08/01/03	14:07					
Di-n-octyl phthalate	ND	11	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		58 %	11-12			"	"	"	"	
Surrogate: Phenol-d6		67 %	16-13	80		"	"	"	"	
Surrogate: Nitrobenzene-d5		71 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromopheno	l	83 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		101 %	64-11	19		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-10 (P308047-03) Soil	Sampled: 08/01	1/03 10:05	Received	08/01/03	14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	54	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	,,	"	,,	,,	,,	"	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Din-octyl phthalate	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Flooranthene ND	32D-SB07-10 (P308047-03) Soil	Sampled: 08/01	/03 10:05	Received:	08/01/03	14:07					
Fluorene	Di-n-octyl phthalate	ND	11	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Hexachlorobutadiene ND 15 330 " " " " " " " " " " " " " " " " " "	Fluoranthene	ND		330			"				
Hexachlorobutadiene ND 17 330 " " " " " " " " Hexachlorocyclopentadiene ND 10 330 " " " " " " " " " " " " " " " " "	Fluorene	ND					"			"	
Hexachlorocyclopentadiene ND 10 330 " " " " " " " " " " " " " " " " "			15							"	
Hexachloroethane ND 17 330 " " " " " " " " " " " " " " " " " "	Hexachlorobutadiene										
Indeno (1,2,3-cd) pyrene ND					"	"	"	"	"	"	
Surrogate: 2-Fluorophenol ND 14 330 "			17		"	"	"	"	"	"	
2-Methylaphthalene ND 10 330 " " " " " " " " " " " " " " " " "	Indeno (1,2,3-cd) pyrene		11				"			"	
2-Methylphenol ND 16 330 " " " " " " " " " " " " " " " " " "	Isophorone	ND	14	330	"	"	"	"	"	"	
4-Methylphenol ND 11 330 " " " " " " " " " " " " " " " " " "							"			"	
A-Netrophenol ND 13 330	2-Methylphenol	ND	16	330	"	"	"	"	"	"	
2-Nitroaniline ND 17 1700 " " " " " " " " " " " " " " " " " "	4-Methylphenol	ND	11	330	"	"	"	"	"	"	
1700	Naphthalene	ND	13	330	"	"	"	"	"	"	
4-Nitroaniline ND 22 1700 " " " " " " " " " " " " " " " " " "	2-Nitroaniline	ND	17		"	"	"	"	"	"	
Nitrobenzene	3-Nitroaniline	ND			"	"	"	"	"	"	
2-Nitrophenol ND 14 330 " " " " " " " " " " " " " " " " " "	4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
No	Nitrobenzene	ND	16	330	"	"	"	"	"	"	
N-Nitrosodimethylamine ND 16 330 """"""""""""""""""""""""""""""""""	2-Nitrophenol				"	"	"	"	"	"	
N-Nitrosodiphenylamine ND 17 330 """"""""""""""""""""""""""""""""""	4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine ND 15 330 """"""""""""""""""""""""""""""""""	N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
Pentachlorophenol ND 12 1700 "	N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
Phenanthrene ND 14 330 "	N-Nitrosodi-n-propylamine	ND		330	"	"	"	"	"	"	
Phenol ND 12 330 "	Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Pyrene ND 12 330 " " " " " " " " " 12 330 " " " " " 12 330 " " " " " " " " 12 330 " " " " " " " " " " " " " " " " " "	Phenanthrene	ND	14	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene ND 15 330 "	Phenol	ND	12	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol ND 14 330 "<	Pyrene	ND	12	330	"	"	"	"	"	"	
ND 9.4 330 " <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td>15</td> <td>330</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol 59 % 11-120 " " " " " Surrogate: Phenol-d6 68 % 16-130 " " " " " Surrogate: Nitrobenzene-d5 72 % 16-126 " " " " " " Surrogate: 2-Fluorobiphenyl 77 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " " "	2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
Surrogate: Phenol-d6 68 % 16-130 " " " " " Surrogate: Nitrobenzene-d5 72 % 16-126 " " " " " Surrogate: 2-Fluorobiphenyl 77 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " " "	2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: Nitrobenzene-d5 72 % 16-126 " " " " " " Surrogate: 2-Fluorobiphenyl 77 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " " "	Surrogate: 2-Fluorophenol		59 %	11-12	20		"	"	"	"	
Surrogate: 2-Fluorobiphenyl 77 % 28-134 " " " " " Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " " "	Surrogate: Phenol-d6		68 %	16-13	80		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " "	Surrogate: Nitrobenzene-d5		72 %	16-12	26		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol 83 % 51-144 " " " "	Surrogate: 2-Fluorobiphenyl		77 %	28-13	34		"	"	"	"	
	Surrogate: 2,4,6-Tribromophenol		83 %	51-14	14		"	"	"	"	
U 1 V	Surrogate: Terphenyl-d14			64-11	19		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-30 (P308047-04) Soil	Sampled: 08/02	1/03 11:15	Received	: 08/01/03	3 14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	33	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND ND	13	330	"	"	"	"	"	"	
2,0-Diminotoruciic	עווו	13	330							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-30 (P308047-04) Soil	Sampled: 08/01	1/03 11:15	Received:	08/01/03	3 14:07					
Di-n-octyl phthalate	ND	11	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		60 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		69 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		74 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		80 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		89 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		105 %	64-11	19		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Acenaphthene Acenaphthylene Anthracene Azobenzene Benzidine Benzoic acid Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND 7 ND 17 ND 7 ND	1:40 3.7 7.6 14 20 00 2.7 7.6 13 3.8 10 11 9.1 15	330 330 330 330 1700 1700 330 330 330 330 330 330	08/01/03 ug/kg " " " " " " " "	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene Anthracene Azobenzene Benzidine Benzoic acid Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND S ND	7.6 14 20 00 2.7 7.6 13 3.8 10	330 330 330 1700 1700 330 330 330 330 660		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	
Anthracene Azobenzene Benzidine Benzoic acid Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND ND ND 17 ND 2 ND	14 20 00 2.7 7.6 13 3.8 10 11	330 330 1700 1700 330 330 330 330 660		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Azobenzene Benzidine Benzoic acid Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND ND 17 ND 2 ND	20 700 2.7 7.6 13 8.8 10 11	330 1700 1700 330 330 330 330 660	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n n	" " " " " " " " " " " " " " " " " " " "	
Benzidine Benzoic acid Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND 17 ND 2 ND 3 ND ND 8 ND N	7.6 13 8.8 10 11	1700 1700 330 330 330 330 330 660	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	
Benzoic acid Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND 22 ND ND N	2.7 7.6 13 8.8 10 11 9.1	1700 330 330 330 330 330 660	" " " "	" "	" "	" " " "	" " "	" "	
Benzo (a) anthracene Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND S ND S ND	7.6 13 8.8 10 11	330 330 330 330 660	" "	" "	"	" "	" "	"	
Benzo (b+k) fluoranthene (total) Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND S ND ND ND ND ND ND ND	13 8.8 10 11 9.1	330 330 330 660	"	"	"	"	"	"	
Benzo (g,h,i) perylene Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND 8 ND ND 9 ND ND 9	8.8 10 11 9.1	330 330 660	"	"	"	"	"		
Benzo (a) pyrene Benzyl alcohol Bis(2-chloroethoxy)methane	ND ND ND 9	10 11 9.1	330 660	"					"	
Benzyl alcohol Bis(2-chloroethoxy)methane	ND ND 9	11 9.1	660		"	"	"	"		
Bis(2-chloroethoxy)methane	ND 9	9.1		"					"	
	ND		330		"	"	"	"	"	
D1 (0 11 1 1) 1		15	550	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND		330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	55	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND 9	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND 9	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate		14	330	"	"	"	"	"	"	
2,4-Dimethylphenol		36	330	"	"	"	"	"	"	
Dimethyl phthalate		11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol		17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol		10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene		20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene		13	330	"	"	"	"	"	"	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Sampled: 08/01/03 11:40 Received: 08/01/03 14:07	Notes
Fluoranthene ND 11 330 """"""""""""""""""""""""""""""""""""	
Fluorene ND 7.9 330 " " " " " " " " " " " " " " " " " "	
Hexachlorobenzene ND 15 330 " " " " " " " " " " " " Hexachlorobutadiene ND 17 330 " " " " " " " " " " " " " " " " " "	
Hexachlorobutadiene ND 17 330 "	
Hexachlorocyclopentadiene ND 10 330 " " " " " " " " " " " " " " " " "	
Hexachloroethane ND 17 330 " " " " " " " " " " " " " " " " " "	
Indeno (1,2,3-cd) pyrene ND	
Isophorone ND	
2-Methylnaphthalene ND 10 330 " " " " " " " " " " " " " " 1 4-Methylphenol ND 11 330 " " " " " " " " " " " " " " " " " 1	
2-Methylphenol ND 16 330 "	
4-Methylphenol ND 11 330 "	
Naphthalene ND 13 330 " " " " " " " " " " " " " " " " "	
2-Nitroaniline ND 17 1700 " " " " " " " " " " " " " " " " " "	
3-Nitroaniline ND 18 1700 " " " " " " " " " 4-Nitroaniline ND 16 330 " " " " " " " " " " " " 1700 " " " " " " 1700 " " " " " " " 1700 " " " " " " 1700 " " " " " " 1700 " " " " " " " 1700 " " " " " " " 1700 " " " " " " " 1700 " " " " " " " 1700 " " " " " " " 1700 " " " " " " " " " " " " " " " " " "	
4-Nitroaniline ND 22 1700 "	
Nitrobenzene ND 16 330 "	
2-Nitrophenol ND 14 330 " " " " " " 4-Nitrophenol ND 23 1700 " " " " " " " " " " N-Nitrosodimethylamine ND 16 330 " " " " " " " " " " " "	
4-Nitrophenol ND 23 1700 " " " " " " " " N-Nitrosodimethylamine ND 16 330 " " " " " " " " "	
N-Nitrosodimethylamine ND 16 330 " " " " " " "	
·	
N-Nitrosodiphenylamine ND 17 330 " " " " " " "	
N-Nitrosodi-n-propylamine ND 15 330 " " " " " " "	
Pentachlorophenol ND 12 1700 " " " " " " "	
Phenanthrene ND 14 330 " " " " " " "	
Phenol ND 12 330 " " " " " " "	
Pyrene ND 12 330 " " " " " "	
1,2,4-Trichlorobenzene ND 15 330 " " " " " " "	
2,4,5-Trichlorophenol ND 14 330 " " " " " " "	
2,4,6-Trichlorophenol ND 9.4 330 " " " " " " " "	
Surrogate: 2-Fluorophenol 59 % 11-120 " " " "	
Surrogate: Phenol-d6 68 % 16-130 " " " "	
Surrogate: Nitrobenzene-d5 71 % 16-126 " " " " "	
Surrogate: 2-Fluorobiphenyl 75 % 28-134 " " " "	
Surrogate: 2,4,6-Tribromophenol 82 % 51-144 " " " "	
Surrogate: Terphenyl-d14 92 % 64-119 " " " "	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07D-35 (P308047-06) Soil	Sampled: 08	/01/03 11:40	Receive	d: 08/01/	03 14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
_, o.o.u	112	13	220							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07D-35 (P308047-06) Soil	Sampled: 08	/01/03 11:40	Receive	d: 08/01/0	03 14:07					
Di-n-octyl phthalate	ND	11	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		60 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		69 %	16-13	80		"	"	"	"	
Surrogate: Nitrobenzene-d5		73 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		81 %	51-14			"	"	"	"	
Surrogate: Terphenyl-d14		102 %	64-11			"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	Re _l MDL	oorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-40E (P308047-07) Water	Sampled:	08/01/03 11:50	Recei	ved: 08/0	1/03 14:07					
Acenaphthene	ND	1.2	10	ug/l	1	3080097	08/06/03	08/13/03	EPA 8270C	
Acenaphthylene	ND	1.4	10	"	"	"	"	"	"	
Anthracene	ND	0.61	10	"	"	"	"	"	"	
Azobenzene	ND	0.64	20	"	"	"	"	"	"	
Benzidine	ND	3.2	51	"	"	"	"	"	"	
Benzoic acid	ND	4.0	51	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.45	10	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	1.2	10	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.65	10	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.89	10	"	"	"	"	"	"	
Benzyl alcohol	ND	4.0	20	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	1.1	10	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	1.5	10	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	1.5	10	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	2.9	10	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.71	10	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	2.7	10	"	"	"	"	"	"	
4-Chloroaniline	ND	0.56	20	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	2.3	20	"	"	"	"	"	"	
2-Chloronaphthalene	ND	1.5	10	"	"	"	"	"	"	
2-Chlorophenol	ND	0.32	10	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.99	10	"	"	"	"	"	"	
Chrysene	ND	0.46	10	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.56	10	"	"	"	"	"	"	
Dibenzofuran	ND	1.1	10	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	1.1	10	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	10	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	10	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	2.9	20	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.48	10	"	"	"	"	"	"	
Diethyl phthalate	ND	0.43	10	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1.4	10	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.57	10	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	3.4	51	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	2.4	51	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	0.84	10	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	0.78	10	"	"	"	,,	,,	"	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	Re _j MDL	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-40E (P308047-07) Water	Sampled:	08/01/03 11:50	Receiv	ved: 08/0	1/03 14:07	7				
Di-n-octyl phthalate	ND	0.83	10	ug/l	1	3080097	08/06/03	08/13/03	EPA 8270C	
Fluoranthene	ND	0.45	10	"	"	"	"	"	"	
Fluorene	ND	1.0	10	"	"	"	"	"	"	
Hexachlorobenzene	ND	0.81	10	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.5	10	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	0.32	10	"	"	"	"	"	"	
Hexachloroethane	ND	1.7	10	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.62	10	"	"	"	"	"	"	
Isophorone	ND	0.72	10	"	"	"	"	"	"	
2-Methylnaphthalene	ND	1.4	10	"	"	"	"	"	"	
2-Methylphenol	ND	3.5	10	"	"	"	"	"	"	
4-Methylphenol	ND	3.1	10	"	"	"	"	"	"	
Naphthalene	ND	1.6	10	"	"	"	"	"	"	
2-Nitroaniline	ND	0.70	51	"	"	"	"	"	"	
3-Nitroaniline	ND	0.55	51	"	"	"	"	"	"	
4-Nitroaniline	ND	0.62	51	"	"	"	"	"	"	
Nitrobenzene	ND	1.3	10	"	"	"	"	"	"	
2-Nitrophenol	ND	0.43	10	"	"	"	"	"	"	
4-Nitrophenol	ND	0.52	51	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	1.5	20	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	3.9	10	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	0.59	10	"	"	"	"	"	"	
Pentachlorophenol	ND	3.1	51	"	"	"	"	"	"	
Phenanthrene	ND	0.57	10	"	"	"	"	"	"	
Phenol	ND	0.49	10	"	,,	"	"	"	"	
Pyrene	ND	0.29	10	"	"	"	"	"	"	
Pyridine	ND	3.8	10	"	,,	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	10	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	0.62	10	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	0.32	10	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		70 %	15-10	3		"	"	"	"	
Surrogate: Phenol-d6		76 %	18-11			"	"	"	"	
Surrogate: Nitrobenzene-d5		96 %	39-10			"	"	"	"	
Surrogate: 2-Fluorobiphenyl		90 % 97 %	40-12			"	"	"	"	
		97 % 96 %	11-14	-		,,	,,	,,	"	
Surrogate: 2,4,6-Tribromophenol						,,	,,	,,	,,	G 7.7
Surrogate: Terphenyl-d14		54 %	56-13	9		"	"	"	"	S-LIM

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-40 (P308047-08) Soil	Sampled: 08/0	1/03 12:05	Received	: 08/01/03	3 14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	68	2.7	1700	"	"	"	"	"	"	J
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	67	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
,										

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

32D-SB07-40 (P308047-08) Soil Sampled: 08/01/03 12:05 Received: 08/01/03 14:07 Di-n-octyl phthalate ND 11 330 ug/kg 1 3080253 08/14/03 08/21/03 EPA 8270C Fluoranthene ND 11 330 " <td< th=""><th></th></td<>	
Fluoranthene ND 11 330 "	
Fluorene ND 7.9 330 " " " " " " " " " " " " " " " Hexachlorobenzene ND 15 330 " " " " " " " " " " " " " " " " " "	
Hexachlorobenzene ND 15 330 " " " " " " " " " " " " " " Hexachlorobutadiene ND 17 330 " " " " " " " " " " " " " " " " " "	
Hexachlorobutadiene ND 17 330 "	
Hexachlorocyclopentadiene ND 10 330 " " " " " " " " " " " " " " " " "	
Hexachloroethane ND 17 330 " " " " " " " " " " " " " " " " " "	
Indeno (1,2,3-cd) pyrene ND 11 330 "	
Isophorone ND 14 330 "	
2-Methylnaphthalene ND 10 330 " " " " " " " " " " " " " " 4-Methylphenol ND 11 330 " " " " " " " " " " " " " " " " " "	
2-Methylphenol ND 16 330 " " " " " " " " 4-Methylphenol ND 11 330 " " " " " " " " "	
4-Methylphenol ND 11 330 " " " " " "	
4-Methylphenol ND 11 550	
Naphthalene ND 13 330 " " " " " " "	
2-Nitroaniline ND 17 1700 " " " " " " "	
3-Nitroaniline ND 18 1700 " " " " " " "	
4-Nitroaniline ND 22 1700 " " " " " " "	
Nitrobenzene ND 16 330 " " " " " " "	
2-Nitrophenol ND 14 330 " " " " " " "	
4-Nitrophenol ND 23 1700 " " " " " " "	
N-Nitrosodimethylamine ND 16 330 " " " " " " "	
N-Nitrosodiphenylamine ND 17 330 " " " " " "	
N-Nitrosodi-n-propylamine ND 15 330 " " " " " " "	
Pentachlorophenol ND 12 1700 " " " " " " "	
Phenanthrene ND 14 330 " " " " " "	
Phenol ND 12 330 " " " " " "	
Pyrene ND 12 330 " " " " " "	
1,2,4-Trichlorobenzene ND 15 330 " " " " " " "	
2,4,5-Trichlorophenol ND 14 330 " " " " " " "	
2,4,6-Trichlorophenol ND 9.4 330 " " " " " " "	
Surrogate: 2-Fluorophenol 65 % 11-120 " " " "	
Surrogate: Phenol-d6 74 % 16-130 " " " " "	
Surrogate: Nitrobenzene-d5 77 % 16-126 " " " "	
Surrogate: 2-Fluorobiphenyl 80 % 28-134 " " " "	
Surrogate: 2,4,6-Tribromophenol 90 % 51-144 " " " "	
Surrogate: Terphenyl-d14 103 % 64-119 " " " "	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
32D-SB07-45 (P308047-09) Soil	Sampled: 08/01	1/03 13:00	Received:	08/01/03	14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
2,0 2 miliotoruche	1112	13	550							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Display	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Fluoranthene ND 11 330 " " " " " " " " " Fluorene ND 7.9 3300 " " " " " " " " " " " " " " " " "	32D-SB07-45 (P308047-09) Soil	Sampled: 08/01	/03 13:00	Received:	08/01/03	3 14:07					
Fluorene	Di-n-octyl phthalate	ND	11			1	3080253	08/14/03	08/21/03	EPA 8270C	
Hexachlorobenzene	Fluoranthene	ND	11	330	"	"	"	"	"	"	
Hexachlorobutadiene ND	Fluorene	ND			"	"	"	"	"	"	
Hexachlorocyclopentadiene ND 10 330 " " " " " " " " " " " " " " " " "	Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachloroethane	Hexachlorobutadiene	ND	17		"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND	Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Isophorone	Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Sophitotic ND	Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
2-Methylphenol ND 16 330 " " " " " " " " " " " " " " " " " "	Isophorone	ND	14	330	"	"	"	"	"	"	
4-Methylphenol ND 11 330 " " " " " " " " " " " " " " " " " "	2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
Naphthalene ND 13 330 "	2-Methylphenol	ND	16	330	"	"	"	"	"	"	
2-Nitroaniline	4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Sample ND	Naphthalene	ND	13	330	"	"	"	"	"	"	
4-Nitroaniline ND 22 1700 " " " " " " " " " " " " " " " " " "	2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
Nitrobenzene	3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
2-Nitrophenol ND 14 330 " " " " " " " " " " " " " " " " " "	4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
4-Nitrophenol ND 23 1700 " " " " " " " " " " N-Nitrosodimethylamine ND 16 330 " " " " " " " " " " " " " " " " " "	Nitrobenzene	ND	16	330	"	"	"	"	"	"	
4-Nitrophenol ND 23 1700 " " " " " " " " " " N-Nitrosodimethylamine ND 16 330 " " " " " " " " " " " " " " " " " "	2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
N-Nitrosodimethylamine ND 16 330 """"""""""""""""""""""""""""""""""	4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine ND 15 330 " " " " " " " " " " " " " " " " " "	N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine ND 15 330 " " " " " " " " " " " " " " " " " "	N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
Pentachlorophenol ND 12 1700 " " " " " " " " " " " " " " "		ND	15		"	"	"	"	"	"	
Phenanthrene ND 14 330 "		ND	12	1700	"	"	"	"	"	"	
Pyrene ND 12 330 "	Phenanthrene	ND	14	330	"	"	"	"	"	"	
Pyrene ND 12 330 "	Phenol	ND	12	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol ND 14 330 "<	Pyrene	ND	12		"	"	"	"	"	"	
2,4,5-Trichlorophenol ND 14 330 "<	1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol ND 9.4 330 "					"	"	"	"	"	"	
Surrogate: Phenol-16 65 % 16-130 " " " " " " " Surrogate: Nitrobenzene-d5 71 % 16-126 " " " " " " " Surrogate: 2-Fluorobiphenyl 74 % 28-134 " " " " " " " " Surrogate: 2,4,6-Tribromophenol 80 % 51-144 " " " " " " " "	2,4,6-Trichlorophenol		9.4		"	"	"	"	"	"	
Surrogate: Nitrobenzene-d5 71 % 16-126 " " " " " " Surrogate: 2-Fluorobiphenyl 74 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 80 % 51-144 " " " " " "	Surrogate: 2-Fluorophenol		56 %	11-12	0		"	"	"	"	
Surrogate: 2-Fluorobiphenyl 74 % 28-134 " " " " " Surrogate: 2,4,6-Tribromophenol 80 % 51-144 " " " " " "	Surrogate: Phenol-d6		65 %	16-13	0		"	"	"	"	
Surrogate: 2-Fluorobiphenyl 74 % 28-134 " " " " " " Surrogate: 2,4,6-Tribromophenol 80 % 51-144 " " " " " "	Surrogate: Nitrobenzene-d5		71 %	16-12	6		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol 80 % 51-144 " " " "				28-13	4		"	"	"	"	
							"	"	"	"	
Surrogate: Terphenyl-d14 101 % 64-119 " " " " "	Surrogate: Terphenyl-d14						"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
36D-SB02-40 (P308047-10) Soil	Sampled: 07/3	1/03 14:06	Received	: 08/01/03	3 14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	100	2.7	1700	"	"	"	"	"	"	J
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	150	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"		"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"		"	"	
_,	112	13	220							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
36D-SB02-40 (P308047-10) Soil	Sampled: 07/31	/03 14:06	Received:	08/01/03	14:07					
Di-n-octyl phthalate	ND	11	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		69 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		80 %	16-13	80		"	"	"	"	
Surrogate: Nitrobenzene-d5		83 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		97 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		107 %	64-11	19		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Dranarad	Analyzed	Method	Notes
						Баісп	Prepared	Analyzed	wenou	notes
36D-SB02D-40 (P308047-11) Soil	Sampled: 07	/31/03 14:06	Receive	d: 08/01/0	03 14:07					
Acenaphthene	ND	8.7	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330			"	"	"	"	
Diethyl phthalate	ND	14	330			"	"	"	"	
2,4-Dimethylphenol	ND	36	330			"	"	"	"	
Dimethyl phthalate	ND	11	330			"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	,,	,,	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	,,	,,	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	,,	"	"	
2,6-Dinitrotoluene	ND ND	13	330	,,	,,	"	,,	"	"	
2,0-Dimitotolucie	ND	13	330							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
36D-SB02D-40 (P308047-11) Soil	Sampled: 07/	31/03 14:06	Receive	d: 08/01/0	03 14:07					
Di-n-octyl phthalate	ND	11	330	ug/kg	1	3080253	08/14/03	08/21/03	EPA 8270C	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		65 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		71 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		99 %	64-11	19		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Petroleum Hydrocarbons as Diesel & others by EPA 8015B - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3080087 - EPA 3510C										
Blank (3080087-BLK1)				Prepared:	08/06/03	Analyzed	1: 08/07/03			
Diesel Range Organics (C10-C28)	0.0862	0.050	mg/l							
Surrogate: Octacosane	0.0494		"	0.0500		99	54-141			
Laboratory Control Sample (308008)	7-BS1)			Prepared:	08/06/03	Analyzed	1: 08/07/03			
Diesel Range Organics (C10-C28)	0.868	0.050	mg/l	1.00		87	49-102			
Surrogate: Octacosane	0.0547		"	0.0500		109	54-141			
Laboratory Control Sample Dup (30	80087-BSD1)		Prepared:	08/06/03	Analyzed	1: 08/07/03			
Diesel Range Organics (C10-C28)	0.940	0.050	mg/l	1.00		94	49-102	8	20	
Surrogate: Octacosane	0.0535		"	0.0500		107	54-141			
Batch 3080254 - CA LUFT - orb	shaker									
Blank (3080254-BLK1)				Prepared:	08/14/03	Analyzed	1: 08/22/03			
Diesel Range Organics (C10-C28)	ND	5.0	mg/kg							
Surrogate: Octacosane	1.47		"	1.67		88	52-133			
Laboratory Control Sample (308025	4-BS1)			Prepared:	08/14/03	Analyzed	1: 08/22/03			
Diesel Range Organics (C10-C28)	27.8	5.0	mg/kg	33.3		83	62-103			
Surrogate: Octacosane	1.46		"	1.67		87	52-133			
Matrix Spike (3080254-MS1)	Sour	rce: P308047-09		Prepared:	08/14/03	Analyzed	1: 08/22/03			
Diesel Range Organics (C10-C28)	31.5	5.0	mg/kg	33.3	1.9	89	62-103			
Surrogate: Octacosane	1.87		"	1.67		112	52-133			
Matrix Spike Dup (3080254-MSD1)	Sour	rce: P308047-09		Prepared:	08/14/03	Analyzed	1: 08/23/03			
Diesel Range Organics (C10-C28)	55.5	5.0	mg/kg	33.3	1.9	161	62-103	55	35	QM-06
Surrogate: Octacosane	2.47		"	1.67		148	52-133			S-02

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Petroleum Hydrocarbons as Diesel & others by EPA 8015B - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3080553 - EPA 3550A										
Blank (3080553-BLK1)				Prepared:	08/27/03	Analyzed	1: 08/29/03			
Diesel Range Organics (C10-C28)	ND	5.0	mg/kg							
Surrogate: Octacosane	1.32		"	1.67		<i>79</i>	52-133			
Laboratory Control Sample (3080553	3-BS1)			Prepared:	08/27/03	Analyzed	1: 08/29/03			
Diesel Range Organics (C10-C28)	20.5	5.0	mg/kg	33.3		62	62-103			
Surrogate: Octacosane	1.12		"	1.67		67	52-133			
Matrix Spike (3080553-MS1)	Sou	rce: P308047-04RE1	=	Prepared:	08/27/03	Analyzed	1: 08/29/03			
Diesel Range Organics (C10-C28)	34.5	5.0	mg/kg	33.3	5.2	88	62-103			
Surrogate: Octacosane	1.66		"	1.67		99	52-133			
Matrix Spike Dup (3080553-MSD1)	Sou	rce: P308047-04RE1		Prepared:	08/27/03	Analyzed	1: 08/29/03			
Diesel Range Organics (C10-C28)	27.1	5.0	mg/kg	33.3	5.2	66	62-103	24	35	
Surrogate: Octacosane	1.36		"	1.67		81	52-133			

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (3080076-BLK1)]	Prepared: 08/0	08/03 Analyzed	1: 08/11/03
Aluminum	ND	25	mg/kg			
Antimony	ND	0.25	"			
Arsenic	ND	0.50	"			
Barium	ND	0.50	"			
Beryllium	ND	0.050	"			
Boron	ND	5.0	"			
Cadmium	ND	0.50	"			
Calcium	ND	50	"			
Chromium	ND	0.50	"			
Cobalt	ND	0.35	"			
Copper	ND	1.0	"			
Iron	ND	25	"			
Lead	ND	0.25	"			
Magnesium	ND	25	"			
Manganese	ND	0.50	"			
Molybdenum	ND	1.0	"			
Nickel	ND	1.5	"			
Potassium	ND	120	"			
elenium	ND	0.50	"			
Silver	ND	0.35	"			
Sodium	ND	25	"			
Гhallium	ND	0.10	"			
litanium –	ND	1.0	"			
Vanadium Vanadium	ND	0.50	"			
inc	ND	1.0	"			
aboratory Control Sample (30	080076-BS1)]	Prepared: 08/0	08/03 Analyzed	1: 08/11/03
Aluminum	243	25	mg/kg	250	97	80-120
Antimony	24.6	0.25	"	25.0	98	80-120
Arsenic	24.5	0.50	"	25.0	98	80-120
Barium	24.5	0.50	"	25.0	98	80-120
Beryllium	2.56	0.050	"	2.50	102	80-120
Boron	24.3	5.0	"	25.0	97	80-120
Cadmium	2.59	0.50	"	2.50	104	80-120
Calcium	261	50	"	250	104	80-120
Chromium	25.5	0.50	"	25.0	102	80-120
Cobalt	24.7	0.35	"	25.0	99	80-120

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Laboratory Control Sample (308	80076-BS1)			Prepared:	08/08/03	Analyze	d: 08/11/03			
Copper	24.2	1.0	mg/kg	25.0		97	80-120			
Iron	264	25	"	250		106	80-120			
Lead	24.1	0.25	"	25.0		96	80-120			
Magnesium	247	25	"	250		99	80-120			
Manganese	25.0	0.50	"	25.0		100	80-120			
Molybdenum	25.0	1.0	"	25.0		100	80-120			
Nickel	24.8	1.5	"	25.0		99	80-120			
Potassium	251	120	"	250		100	80-120			
Selenium	26.7	0.50	"	25.0		107	80-120			
Silver	2.40	0.35	"	2.50		96	80-120			
Sodium	248	25	"	250		99	80-120			
Thallium	24.4	0.10	"	25.0		98	80-120			
Titanium	24.6	1.0	"	25.0		98	80-120			
Vanadium	25.1	0.50	"	25.0		100	80-120			
Zinc	23.4	1.0	"	25.0		94	80-120			
Duplicate (3080076-DUP1)	Source: P	308047-02		Prepared:	08/08/03	Analyze	d: 08/11/03			
Aluminum	15300	120	mg/kg		15000			2	10	
Antimony	ND	1.2	"		0.17				10	
Arsenic	3.34	2.4	"		4.3			25	10	QM-07
Barium	103	2.4	"		100			3	10	
Beryllium	0.388	0.24	"		0.36			7	10	
Boron	ND	24	"		0.78				10	
Cadmium	ND	2.4	"		ND				10	
Calcium	2500	240	"		2400			4	10	
Chromium	42.7	2.4	"		41			4	10	
Cobalt	9.56	1.7	"		9.4			2	10	
Copper	58.8	4.8	"		57			3	10	
Iron	21400	120	"		21000			2	10	
Lead	4.46	1.2	"		4.4			1	10	
Magnesium	5060	120	"		4900			3	10	
Manganese	347	2.4	"		330			5	10	
Molybdenum	2.67	4.8	"		2.4			11	10	QR-0
Nickel	32.3	7.2	"		33			2	10	
Potassium	1520	600	"		1500			1	10	
Selenium	ND	2.4	"		0.14				10	
Silver	ND	1.7	"		ND				10	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch	3080076	- EPA	3050B
-------	---------	-------	-------

Duplicate (3080076-DUP1)	Source:	P308047-02		Prepared:	08/08/03	Analyze	d: 08/11/03			
Sodium	239	120	mg/kg	·	220			8	10	
Thallium	ND	0.48	"		0.098				10	
Titanium	677	4.8	"		660			3	10	
Vanadium	47.9	2.4	"		46			4	10	
Zinc	68.0	4.8	"		63			8	10	
Matrix Spike (3080076-MS1)	Source:	P308047-02		Prepared:	08/08/03	Analyze	d: 08/11/03			
Aluminum	15700	22	mg/kg	219	15000	320	80-120			QM-4X
Antimony	8.54	0.22	"	21.9	0.17	38	80-120			QM-07
Arsenic	24.8	0.44	"	21.9	4.3	94	80-120			
Barium	116	0.44	"	21.9	100	73	80-120			QM-4X
Beryllium	2.48	0.044	"	2.19	0.36	97	80-120			
Boron	19.3	4.4	"	21.9	0.78	85	80-120			
Cadmium	2.23	0.44	"	2.19	ND	102	80-120			
Calcium	2600	44	"	219	2400	91	80-120			
Chromium	65.5	0.44	"	21.9	41	112	80-120			
Cobalt	28.9	0.31	"	21.9	9.4	89	80-120			
Copper	68.1	0.88	"	21.9	57	51	80-120			QM-07
Iron	20700	22	"	219	21000	NR	80-120			QM-4X
Lead	25.2	0.22	"	21.9	4.4	95	80-120			
Magnesium	4830	22	"	219	4900	NR	80-120			QM-4X
Manganese	356	0.44	"	21.9	330	119	80-120			
Molybdenum	21.9	0.88	"	21.9	2.4	89	80-120			
Nickel	56.0	1.3	"	21.9	33	105	80-120			
Potassium	1790	110	"	219	1500	132	80-120			QM-4X
Selenium	20.7	0.44	"	21.9	0.14	94	80-120			
Silver	1.81	0.31	"	2.19	ND	83	80-120			
Sodium	417	22	"	219	220	90	80-120			
Thallium	21.0	0.088	"	21.9	0.098	95	80-120			
Titanium	667	0.88	"	21.9	660	32	80-120			QM-4X
Vanadium	66.1	0.44	"	21.9	46	92	80-120			
Zinc	108	0.88	"	21.9	63	205	80-120			QM-07

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

NA	~	D200045 02		D '	00/00/02		1 00/11/02			
Matrix Spike Dup (3080076-MSD1)		P308047-02		_		-	d: 08/11/03			
Aluminum	17200	25	0 0	245	15000	898	80-120	9	20	QM-4X
Antimony	9.62	0.25	"	24.5	0.17	39	80-120	12	20	QM-07
Arsenic	27.3	0.49	"	24.5	4.3	94	80-120	10	20	
Barium	123	0.49	"	24.5	100	94	80-120	6	20	
Beryllium	2.81	0.049	"	2.45	0.36	100	80-120	12	20	
Boron	22.0	4.9	"	24.5	0.78	87	80-120	13	20	
Cadmium	2.66	0.49	"	2.45	ND	109	80-120	18	20	
Calcium	2590	49	"	245	2400	78	80-120	0.4	20	QM-4X
Chromium	65.3	0.49	"	24.5	41	99	80-120	0.3	20	
Cobalt	32.6	0.34	"	24.5	9.4	95	80-120	12	20	
Copper	77.8	0.98	"	24.5	57	85	80-120	13	20	
Iron	22700	25	"	245	21000	694	80-120	9	20	QM-4X
Lead	27.1	0.25	"	24.5	4.4	93	80-120	7	20	
Magnesium	5060	25	"	245	4900	65	80-120	5	20	QM-4X
Manganese	379	0.49	"	24.5	330	200	80-120	6	20	QM-4X
Molybdenum	23.7	0.98	"	24.5	2.4	87	80-120	8	20	
Nickel	62.4	1.5	"	24.5	33	120	80-120	11	20	
Potassium	1660	120	"	245	1500	65	80-120	8	20	QM-4X
Selenium	23.4	0.49	"	24.5	0.14	95	80-120	12	20	_
Silver	2.00	0.34	"	2.45	ND	82	80-120	10	20	
Sodium	437	25	"	245	220	89	80-120	5	20	
Thallium	23.2	0.098	"	24.5	0.098	94	80-120	10	20	
Titanium	714	0.98	"	24.5	660	220	80-120	7	20	QM-4X
Vanadium	73.0	0.49	"	24.5	46	110	80-120	10	20	
Zinc	96.5	0.98	"	24.5	63	137	80-120	11	20	QM-07
Post Spike (3080076-PS1)	Source:	P308047-02		Prepared:	08/08/03	Analyze	d: 09/08/03			
Aluminum	15100	24	mg/kg	240	15000	42	80-120			QM-4X
Antimony	23.2	1.2	"	24.0	0.17	96	80-120			
Arsenic	27.4	0.48	"	24.0	4.3	96	80-120			
Barium	121	0.48	"	24.0	100	88	80-120			
Beryllium	2.82	0.048	"	2.40	0.36	102	80-120			
Boron	24.1	4.8		24.0	0.78	97	80-120			
Cadmium	2.37	0.48	,,	2.40	ND	99	80-120			
Calcium	2670	48	"	240	2400	112	80-120			
Chromium	66.2	0.48	"	24.0	41	105	80-120			
Cobalt	32.6	0.40	,,	27.0	71	105	00 120			

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Post Spike (3080076-PS1)	Source: 1	P308047-02		Prepared:	08/08/03	Analyze	1: 09/08/03	
Copper	77.3	0.96	mg/kg	24.0	57	85	80-120	
Iron	21100	24	"	240	21000	42	80-120	QM-4X
Lead	28.2	0.24	"	24.0	4.4	99	80-120	
Magnesium	5180	24	"	240	4900	117	80-120	
Manganese	365	0.48	"	24.0	330	146	80-120	QM-4X
Molybdenum	25.8	0.96	"	24.0	2.4	98	80-120	
Nickel	56.7	1.4	"	24.0	33	99	80-120	
Potassium	1690	120	"	240	1500	79	80-120	QM-4X
Selenium	24.2	0.48	"	24.0	0.14	100	80-120	
Silver	2.05	0.34	"	2.40	ND	85	80-120	
Sodium	439	24	"	240	220	91	80-120	
Thallium	24.0	0.096	"	24.0	0.098	100	80-120	
Titanium	693	0.96	"	24.0	660	138	80-120	QM-4X
Vanadium	70.5	0.48	"	24.0	46	102	80-120	
Zinc	90.1	0.96	"	24.0	63	113	80-120	

Zinc	90.1		0.96	"	24.0	63	113	80-120		
Batch 3080149 - EPA 3010A										
Blank (3080149-BLK1)					Prepared &	& Analyze	ed: 08/12/	/03	 	
Aluminum	ND		200	ug/l						
Antimony	ND		3.0	"						
Arsenic	ND		5.0	"						
Barium	ND		6.0	"						
Beryllium	ND		1.0	"						
Boron	ND		40	"						
Cadmium	ND	2.1	10	"						
Calcium	ND		1000	"						
Chromium	ND		8.0	"						
Cobalt	ND		7.0	"						
Copper	ND		6.0	"						
Iron	ND		300	"						
Lead	ND		2.0	"						
Magnesium	ND		500	"						
Manganese	ND		10	"						
Molybdenum	ND		20	"						
Nickel	ND	6.5	30	"						
Potassium	ND	570	2500	"						
Selenium	ND		2.0	"						

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3080149 - EPA 3010	A							
Blank (3080149-BLK1)					Prepared & An	alyzed: 08/12/	03	
Silver	ND		7.0	ug/l	•	•		
Sodium	ND		500	"				
Thallium	ND		2.0	"				
Titanium	ND		10	"				
Vanadium	ND	1.8	10	"				
Zinc	ND		20	"				
Laboratory Control Sample (3	3080149-BS1)				Prepared & An	alyzed: 08/12/	03	
Aluminum	5030		200	ug/l	5000	101	80-120	
Antimony	521		3.0	"	500	104	80-120	
Arsenic	490		5.0	"	500	98	80-120	
Barium	511		6.0	"	500	102	80-120	
Beryllium	53.2		1.0	"	50.0	106	80-120	
Boron	519		40	"	500	104	80-120	
Cadmium	54.3	2.1	10	"	50.0	109	80-120	
Calcium	5510		1000	"	5000	110	80-120	
Chromium	535		8.0	"	500	107	80-120	
Cobalt	512		7.0	"	500	102	80-120	
Copper	502		6.0	"	500	100	80-120	
Iron	5500		300	"	5000	110	80-120	
Lead	576		2.0	"	500	115	80-120	
Magnesium	5150		500	"	5000	103	80-120	
Manganese	521		10	"	500	104	80-120	
Molybdenum	524		20	"	500	105	80-120	
Nickel	531	6.5	30	"	500	106	80-120	
Potassium	4890	570	2500	"	5000	98	80-120	
Selenium	494		2.0	"	500	99	80-120	
Silver	48.8		7.0	"	50.0	98	80-120	
Sodium	5160		500	"	5000	103	80-120	
Thallium	597		2.0	"	500	119	80-120	
Titanium	505		10	"	500	101	80-120	
Vanadium	526	1.8	10	"	500	105	80-120	
Zinc	487		20	"	500	97	80-120	

Batch 3080149 - EPA 3010A

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	i

Duplicate (3080149-DUP1)	Sou	rce: P3080	47-07		Prepared	& Analyze	d: 08/12/	03		
Aluminum	ND		1000	ug/l		41				10
Antimony	ND		15	"		0.079				10
Arsenic	ND		25	"		3.7				10
Barium	13.8		50	"		13			6	10
Beryllium	ND		5.0	"		ND				10
Boron	ND		500	"		ND				10
Cadmium	ND	10	50	"		ND				10
Calcium	4210		5000	"		4200			0.2	10
Chromium	ND		50	"		ND				10
Cobalt	ND		35	"		ND				10
Copper	ND		50	"		12				10
Iron	ND		1500	"		210				10
Lead	ND		10	"		1.5				10
Magnesium	1210		2500	"		1200			0.8	10
Manganese	18.9		50	"		20			6	10
Molybdenum	ND		100	"		ND				10
Nickel	ND	32	150	"		ND				10
Potassium	ND	2900	12000	"		630				10
Selenium	ND		10	"		0.22				10
Silver	ND		35	"		ND				10
Sodium	1740		2500	"		1600			8	10
Thallium	ND		10	"		ND				10
Гitanium	9.30		50	"		2.1				10
Vanadium	ND	9.1	50	"		ND				10
Zinc	247		100	"		240			3	10
Matrix Spike (3080149-MS1)	Sou	rce: P3080	47-07		Prepared	& Analyze	d: 08/12/	03		
Aluminum	5050		200	ug/l	5000	41	100	80-120		
Antimony	471		3.0	"	500	0.079	94	80-120		
Arsenic	480		5.0	"	500	3.7	95	80-120		
Barium	521		6.0	"	500	13	102	80-120		
Beryllium	53.0		1.0	"	50.0	ND	106	80-120		
Boron	519		40	"	500	ND	104	80-120		

Sequoia Analytical - Petaluma

52.1

9540

532

503

2.1

10

1000

8.0

7.0

50.0

5000

500

500

ND

4200

ND

ND

Cadmium

Calcium

Cobalt

Chromium

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

80-120

80-120

80-120

80-120

104

107

106

101

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 3080149 - EPA 3010A

Matrix Spike (3080149-MS1)	Sou	rce: P30804	7-07		Prepared a	& Analyze	d: 08/12/	03			
Copper	515		6.0	ug/l	500	12	101	80-120			
ron	5700		300	"	5000	210	110	80-120			
Lead	557		2.0	"	500	1.5	111	80-120			
Magnesium	6290		500	"	5000	1200	102	80-120			
Manganese	539		10	"	500	20	104	80-120			
Molybdenum	516		20	"	500	ND	103	80-120			
Nickel	542	6.5	30	"	500	ND	108	80-120			
Potassium	5470	570	2500	"	5000	630	97	80-120			
Selenium	423		2.0	"	500	0.22	85	80-120			
lilver	49.0		7.0	"	50.0	ND	98	80-120			
Sodium	6650		500	"	5000	1600	101	80-120			
Γhallium	571		2.0	"	500	ND	114	80-120			
Titanium	498		10	"	500	2.1	99	80-120			
Vanadium Vanadium	524	1.8	10	"	500	ND	105	80-120			
Zinc	718		20	"	500	240	96	80-120			
Matrix Spike Dup (3080149-MSD1)	Sou	rce: P30804	7-07		Prepared of	& Analyze	d: 08/12/	03			
Aluminum	5160		200	ug/l	5000	41	102	80-120	2	20	
antimony	535		3.0	"	500	0.079	107	80-120	13	20	
arsenic	498		5.0	"	500	3.7	99	80-120	4	20	
Barium	535		6.0	"	500	13	104	80-120	3	20	
Beryllium	53.9		1.0	"	50.0	ND	108	80-120	2	20	
Boron	525		40	"	500	ND	105	80-120	1	20	
Cadmium	57.9	2.1	10	"	50.0	ND	116	80-120	11	20	
Calcium	9690		1000	"	5000	4200	110	80-120	2	20	
Chromium	541		8.0	"	500	ND	108	80-120	2	20	
Cobalt	514		7.0	"	500	ND	103	80-120	2	20	
Copper	527		6.0	"	500	12	103	80-120	2	20	
ron	5810		300	"	5000	210	112	80-120	2	20	
Lead	591		2.0	"	500	1.5	118	80-120	6	20	
Magnesium	6450		500	"	5000	1200	105	80-120	3	20	
Manganese	550		10	"	500	20	106	80-120	2	20	
Molybdenum	535		20	"	500	ND	107	80-120	4	20	
Vickel	556	6.5	30	"	500	ND	111	80-120	3	20	
Potassium	5610	570	2500	"	5000	630	100	80-120	3	20	
Selenium	497		2.0	"	500	0.22	99	80-120	16	20	
Silver	50.6		7.0	"	50.0	ND	101	80-120	3	20	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3080149 - EPA	3010A
---------------------	-------

Iatrix Spike Dup (3080149-MSD1)	Sour	ce: P30804	7-07		Prepared	& Analyze	d: 08/12/	03		
odium	6810		500	ug/l	5000	1600	104	80-120	2	20
hallium	610		2.0	"	500	ND	122	80-120	7	20
itanium	513		10	"	500	2.1	102	80-120	3	20
anadium	537	1.8	10	"	500	ND	107	80-120	2	20
inc	728		20	"	500	240	98	80-120	1	20
ost Spike (3080149-PS1)	Sour	ce: P30804	7-07		Prepared:	08/12/03	Analyze	d: 09/08/03		
luminum	4920		200	ug/l	5000	41	98	80-120		
ntimony	525		15	"	500	0.079	105	80-120		
rsenic	499		25	"	500	3.7	99	80-120		
arium	503		10	"	500	13	98	80-120		
eryllium	54.7		1.0	"	50.0	ND	109	80-120		
oron	528		100	"	500	ND	106	80-120		
admium	55.2	2.1	10	"	50.0	ND	110	80-120		
alcium	9860		1000	"	5000	4200	113	80-120		
hromium	533		10	"	500	ND	107	80-120		
obalt	515		7.0	"	500	ND	103	80-120		
opper	505		10	"	500	12	99	80-120		
on	5610		300	"	5000	210	108	80-120		
ead	500		10	"	500	1.5	100	80-120		
Iagnesium	6240		500	"	5000	1200	101	80-120		
langanese	544		10	"	500	20	105	80-120		
Iolybdenum	523		20	"	500	ND	105	80-120		
ickel	537	6.5	30	"	500	ND	107	80-120		
otassium	4900	570	2500	"	5000	630	85	80-120		
elenium	468		10	"	500	0.22	94	80-120		
ilver	48.1		7.0	"	50.0	ND	96	80-120		
odium	6470		500	"	5000	1600	97	80-120		
hallium	500		10	"	500	ND	100	80-120		
itanium	506		10	"	500	2.1	101	80-120		
anadium	529	1.8	10	"	500	ND	106	80-120		
inc	784		20	"	500	240	109	80-120		

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3080171 - EPA 245/7470A											
Blank (3080171-BLK1)					Prepared	& Analyze	ed: 08/12/0	03			
Mercury	ND		0.20	ug/l							
Laboratory Control Sample (3080171	-BS1)				Prepared	& Analyze	ed: 08/12/0	03			
Mercury	1.61		0.20	ug/l	1.59		101	80-120			
Duplicate (3080171-DUP1)	Sou	rce: P30804	7-07		Prepared	& Analyze	ed: 08/12/0	03			
Mercury	ND		1.0	ug/l		ND				10	
Matrix Spike (3080171-MS1)	Sou	rce: P30804	7-07		Prepared	& Analyze	ed: 08/12/0	03			
Mercury	1.59		0.20	ug/l	1.59	ND	100	80-120			
Matrix Spike Dup (3080171-MSD1)	Sou	rce: P30804	7-07		Prepared	& Analyze	ed: 08/12/0	03			
Mercury	1.59		0.20	ug/l	1.59	ND	100	80-120	0	20	
Post Spike (3080171-PS1)	Sou	rce: P30804	7-07		Prepared	& Analyze	ed: 08/12/0	03			
Mercury	5.14		0.20	ug/l	3.98	ND	129	80-120			QM-07
Batch 3080172 - EPA 7471A											
Blank (3080172-BLK1)					Prepared:	08/13/03	Analyzed	1: 08/14/03			
Mercury	ND		0.017	mg/kg							
Laboratory Control Sample (3080172	-BS1)				Prepared:	08/13/03	Analyzed	1: 08/14/03			
Mercury	0.119		0.019	mg/kg	0.127		94	80-120			·
Duplicate (3080172-DUP1)	Sou	rce: P30804	7-02		Prepared:	08/13/03	Analyzed	1: 08/14/03			
Mercury	0.0293		0.017	mg/kg		0.13			126	10	QR-07

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Analyte	Result	•	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080172 - EPA 7471A											
Matrix Spike (3080172-MS1)	Sou	rce: P308047-02	2		Prepared:	08/13/03	Analyzed	1: 08/14/03			
Mercury	0.265	0	0.018	mg/kg	0.117	0.13	115	80-120			
Matrix Spike Dup (3080172-MSD1)	Sou	rce: P308047-02	2		Prepared:	08/13/03	Analyzed	1: 08/14/03			
Mercury	0.274	0	0.016	mg/kg	0.108	0.13	133	80-120	3	20	QM-07
Post Spike (3080172-PS1)	Sou	rce: P308047-02	2		Prepared:	08/13/03	Analyzed	1: 08/14/03			
Mercury	0.0104			ug/ml	0.00159	0.0037	421	80-120			QM-07
Batch 3080258 - General Prepara	tion										
Blank (3080258-BLK1)					Prepared:	08/14/03	Analyzed	1: 08/15/03			
Hexavalent Chromium	ND		0.21	mg/kg							
Laboratory Control Sample (3080258	B-BS1)				Prepared:	08/14/03	Analyzed	1: 08/15/03			
Hexavalent Chromium	3.34		0.21	mg/kg	4.00		84	80-120			
Matrix Spike (3080258-MS1)	Sou	rce: P308071-01	1		Prepared:	08/14/03	Analyzed	1: 08/15/03			
Hexavalent Chromium	3.31		0.21	mg/kg	4.02	0.64	66	75-125			QM-07
Matrix Spike (3080258-MS2)	Sou	rce: P308071-01	1		Prepared:	08/14/03	Analyzed	1: 08/15/03			
Hexavalent Chromium	778		10	mg/kg	978	0.64	79	75-125			QM-07
Matrix Spike (3080258-MS3)	Sou	rce: P308071-01	1		Prepared:	08/14/03	Analyzed	1: 08/15/03			
Hexavalent Chromium	4.67		0.21	mg/kg	4.02	0.64	100	75-125			
Matrix Spike Dup (3080258-MSD1)	Sou	rce: P308071-01	1		Prepared:	08/14/03	Analyzed	1: 08/15/03			
Hexavalent Chromium	3.23		0.21	mg/kg	3.97	0.64	65	75-125	2	20	QM-07

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3080258 - General Prepara	tion
---------------------------------	------

Matrix Spike Dup (3080258-MSD2)	Source: P308071-0)1		Prepared:	08/14/03	Analyze	d: 08/15/03			
Hexavalent Chromium	686	10	mg/kg	927	0.64	74	75-125	13	20	QM-07
Matrix Spike Dup (3080258-MSD3)	Source: P308071-0)1		Prepared:	08/14/03	Analyze	d: 08/15/03			
Hexavalent Chromium	4.17	0.21	mg/kg	4.02	0.64	88	75-125	11	20	

Project: Aerojet RI/FS Project Number: N/A Project Manager: Bruce Lewis

P308047 Reported: 09/09/03 16:33

Tentatively Identified Compounds by GC/MS - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3080097 - EPA 3520E	B LiqLiquid										
Blank (3080097-BLK1)					Prepared:	08/06/03	Analyzed	: 08/13/03			
No TICs found	ND		10	ug/l							

Batch 3080253 - EPA 3550A Sonication

Blank (3080253-BLK1) Prepared: 08/14/03 Analyzed: 08/21/03 No TICs found ND 300 ug/kg

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch	3080097	-	EPA	3520B	Lic	Liquid

Blank (3080097-BLK1)					Prepared: 08/06/03 Analyzed: 08/13/03
Acenaphthene	ND	1.2	10	ug/l	
Acenaphthylene	ND	1.4	10	"	
Anthracene	ND	0.60	10	"	
Azobenzene	ND	0.63	20	"	
Benzidine	ND	3.2	50	"	
Benzoic acid	ND	3.9	50	"	
Benzo (a) anthracene	ND	0.44	10	"	
Benzo (b+k) fluoranthene (total)	ND	1.1	10	"	
Benzo (g,h,i) perylene	ND	0.64	10	"	
Benzo (a) pyrene	ND	0.87	10	"	
Benzyl alcohol	ND	3.9	20	"	
Bis(2-chloroethoxy)methane	ND	1.1	10	"	
Bis(2-chloroethyl)ether	ND	1.5	10	"	
Bis(2-chloroisopropyl)ether	ND	1.5	10	"	
Bis(2-ethylhexyl)phthalate	ND	2.8	10	"	
4-Bromophenyl phenyl ether	ND	0.70	10	"	
Butyl benzyl phthalate	ND	2.7	10	"	
4-Chloroaniline	ND	0.55	20	"	
4-Chloro-3-methylphenol	ND	2.3	20	"	
2-Chloronaphthalene	ND	1.4	10	"	
2-Chlorophenol	ND	0.31	10	"	
4-Chlorophenyl phenyl ether	ND	0.97	10	"	
Chrysene	ND	0.45	10	"	
Dibenz (a,h) anthracene	ND	0.55	10	"	
Dibenzofuran	ND	1.1	10	"	
Di-n-butyl phthalate	ND	1.1	10	"	
1,2-Dichlorobenzene	ND	1.8	10	"	
1,3-Dichlorobenzene	ND	1.8	10	"	
1,4-Dichlorobenzene	ND	1.8	10	"	
3,3´-Dichlorobenzidine	ND	2.9	20	"	
2,4-Dichlorophenol	ND	0.47	10	"	
Diethyl phthalate	ND	0.42	10	"	
2,4-Dimethylphenol	ND	1.4	10	"	
Dimethyl phthalate	ND	0.56	10	"	
4,6-Dinitro-2-methylphenol	ND	3.4	50	"	
2,4-Dinitrophenol	ND	2.3	50	"	
2,4-Dinitrotoluene	ND	0.82	10	"	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 3080097 - EPA 3520B Li	qLiquid				
Blank (3080097-BLK1)					Prepared: 08/06/03 Analyzed: 08/13/03
2,6-Dinitrotoluene	ND	0.76	10	ug/l	
Di-n-octyl phthalate	ND	0.81	10	"	
Fluoranthene	ND	0.44	10	"	
Fluorene	ND	1.0	10	"	
Hexachlorobenzene	ND	0.79	10	"	
Hexachlorobutadiene	ND	1.5	10	"	
Hexachlorocyclopentadiene	ND	0.31	10	"	
Hexachloroethane	ND	1.7	10	"	
Indeno (1,2,3-cd) pyrene	ND	0.61	10	"	
Isophorone	ND	0.71	10	"	
2-Methylnaphthalene	ND	1.4	10	"	
2-Methylphenol	ND	3.4	10	"	
4-Methylphenol	ND	3.0	10	"	
Naphthalene	ND	1.6	10	"	
2-Nitroaniline	ND	0.69	50	"	
3-Nitroaniline	ND	0.54	50	"	
4-Nitroaniline	ND	0.61	50	"	
Nitrobenzene	ND	1.3	10	"	
2-Nitrophenol	ND	0.42	10	"	
4-Nitrophenol	ND	0.51	50	"	
N-Nitrosodimethylamine	ND	1.4	20	"	
N-Nitrosodiphenylamine	ND	3.9	10	"	
N-Nitrosodi-n-propylamine	ND	0.58	10	"	
Pentachlorophenol	ND	3.1	50	"	
Phenanthrene	ND	0.56	10	"	
Phenol	ND	0.48	10	"	
Pyrene	ND	0.28	10	"	
Pyridine	ND	3.8	10	"	
1,2,4-Trichlorobenzene	ND	1.7	10	"	
2,4,5-Trichlorophenol	ND	0.61	10	"	
2,4,6-Trichlorophenol	ND	0.31	10	"	
Surrogate: 2-Fluorophenol	111			"	150 74 15-103
Surrogate: Phenol-d6	123			"	150 82 18-115
Surrogate: Nitrobenzene-d5	99.9			"	100 100 39-103
Surrogate: 2-Fluorobiphenyl	98.2			"	100 98 40-124
Surrogate: 2,4,6-Tribromophenol	152			"	150 101 11-142

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3080097 - EPA 3520B L	iqLiquid									
Blank (3080097-BLK1)					Prepared: 08/0	06/03 Analyzed	1: 08/13/03			
Surrogate: Terphenyl-d14	122			ug/l	100	122	56-139			
Laboratory Control Sample (3080	0097-BS1)				Prepared: 08/0	06/03 Analyzed	1: 08/13/03			
Acenaphthene	105	1.2	10	ug/l	100	105	58-120			
4-Chloro-3-methylphenol	112	2.3	20	"	100	112	51-116			
2-Chlorophenol	92.9	0.31	10	"	100	93	28-111			
1,4-Dichlorobenzene	80.7	1.8	10	"	100	81	29-108			
2,4-Dinitrotoluene	124	0.82	10	"	100	124	60-114			Q-LIM
4-Nitrophenol	98.2	0.51	50	"	100	98	25-148			
N-Nitrosodi-n-propylamine	95.8	0.58	10	"	100	96	29-119			
Pentachlorophenol	111	3.1	50	"	100	111	40-131			
Phenol	82.5	0.48	10	"	100	82	22-117			
Pyrene	120	0.28	10	"	100	120	52-127			
1,2,4-Trichlorobenzene	91.8	1.7	10	"	100	92	24-131			
Surrogate: 2-Fluorophenol	118			"	150	79	15-103			
Surrogate: Phenol-d6	119			"	150	79	18-115			
Surrogate: Nitrobenzene-d5	101			"	100	101	39-103			
Surrogate: 2-Fluorobiphenyl	101			"	100	101	40-124			
Surrogate: 2,4,6-Tribromophenol	176			"	150	117	11-142			
Surrogate: Terphenyl-d14	118			"	100	118	56-139			
Laboratory Control Sample Dup	(3080097-BSD1)			Prepared: 08/0	06/03 Analyzed	1: 08/13/03			
Acenaphthene	101	1.2	10	ug/l	100	101	58-120	4	27	
4-Chloro-3-methylphenol	112	2.3	20	"	100	112	51-116	0	30	
2-Chlorophenol	86.3	0.31	10	"	100	86	28-111	7	39	
1,4-Dichlorobenzene	68.1	1.8	10	"	100	68	29-108	17	41	
2,4-Dinitrotoluene	123	0.82	10	"	100	123	60-114	0.8	22	Q-LIM
4-Nitrophenol	92.9	0.51	50	"	100	93	25-148	6	44	
N-Nitrosodi-n-propylamine	96.7	0.58	10	"	100	97	29-119	0.9	44	
Pentachlorophenol	110	3.1	50	"	100	110	40-131	0.9	33	
Phenol	78.8	0.48	10	"	100	79	22-117	5	33	
Pyrene	119	0.28	10	"	100	119	52-127	0.8	25	
1,2,4-Trichlorobenzene	83.5	1.7	10	"	100	84	24-131	9	48	
Surrogate: 2-Fluorophenol	106			"	150	71	15-103			
Surrogate: Phenol-d6	114			"	150	76	18-115			
Surrogate: Nitrobenzene-d5	98.7			"	100	99	39-103			
Surrogate: 2-Fluorobiphenyl	101			"	100	101	40-124			

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3080097 - EPA 3520B LiqLiquid

Laboratory Control Sample Dup	nmple Dup (3080097-BSD1)		Prepared: 08/	06/03 Analyzed	1: 08/13/03	
Surrogate: 2,4,6-Tribromophenol	179	ug/l	150	119	11-142	
Surrogate: Terphenyl-d14	120	"	100	120	56-139	

Batch 3080253 - EPA 3550A Sonication

Blank (3080253-BLK1)					Prepared: 08/14/03 Analyzed: 08/21/03
Acenaphthene	ND	8.7	330	ug/kg	-
Acenaphthylene	ND	7.6	330	"	
Anthracene	ND	14	330	"	
Azobenzene	ND	20	330	"	
Benzidine	ND	1700	1700	"	
Benzoic acid	ND	2.7	1700	"	
Benzo (a) anthracene	ND	7.6	330	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	
Benzo (a) pyrene	ND	10	330	"	
Benzyl alcohol	ND	11	660	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	
Bis(2-chloroethyl)ether	ND	15	330	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	
4-Bromophenyl phenyl ether	ND	13	330	"	
Butyl benzyl phthalate	ND	11	330	"	
4-Chloroaniline	ND	58	660	"	
4-Chloro-3-methylphenol	ND	11	660	"	
2-Chloronaphthalene	ND	9.9	330	"	
2-Chlorophenol	ND	16	330	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	
Chrysene	ND	11	330	"	
Dibenz (a,h) anthracene	ND	18	330	"	
Dibenzofuran	ND	9.6	330	"	
Di-n-butyl phthalate	ND	12	330	"	
1,2-Dichlorobenzene	ND	16	330	"	
1,3-Dichlorobenzene	ND	14	330	"	
1,4-Dichlorobenzene	ND	15	330	"	
3,3´-Dichlorobenzidine	ND	44	660	"	
2,4-Dichlorophenol	ND	15	330	"	

Sequoia Analytical - Petaluma

Batch 3080253 - EPA 3550A Sonication

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Blank (3080253-BLK1)					Prepared: 08/14/03 Analyzed: 08/21/03
Diethyl phthalate	ND	14	330	ug/kg	
2,4-Dimethylphenol	ND	36	330	"	
Dimethyl phthalate	ND	11	330	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	
2,4-Dinitrophenol	ND	10	1700	"	
2,4-Dinitrotoluene	ND	20	330	"	
2,6-Dinitrotoluene	ND	13	330	"	
Di-n-octyl phthalate	ND	11	330	"	
Fluoranthene	ND	11	330	"	
Fluorene	ND	7.9	330	"	
Hexachlorobenzene	ND	15	330	"	
Hexachlorobutadiene	ND	17	330	"	
Hexachlorocyclopentadiene	ND	10	330	"	
Hexachloroethane	ND	17	330	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	
Isophorone	ND	14	330	"	
2-Methylnaphthalene	ND	10	330	"	
2-Methylphenol	ND	16	330	"	
4-Methylphenol	ND	11	330	"	
Naphthalene	ND	13	330	"	
2-Nitroaniline	ND	17	1700	"	
3-Nitroaniline	ND	18	1700	"	
4-Nitroaniline	ND	22	1700	"	
Nitrobenzene	ND	16	330	"	
2-Nitrophenol	ND	14	330	"	
4-Nitrophenol	ND	23	1700	"	
N-Nitrosodimethylamine	ND	16	330	"	
N-Nitrosodiphenylamine	ND	17	330	"	

330

1700

330

330

330

330

330

330

15

12

14

12

12

15

14

9.4

ND

ND

ND

ND

ND

ND

ND

ND

N-Nitrosodi-n-propylamine

Pentachlorophenol

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Phenanthrene

Phenol

Pyrene

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3080253 - EPA 3550A Sor	nication							
Blank (3080253-BLK1)					Prepared:	08/14/03	Analyze	d: 08/21/03
Surrogate: 2-Fluorophenol	2930			ug/kg	5000		59	11-120
Surrogate: Phenol-d6	3390			"	5000		68	16-130
Surrogate: Nitrobenzene-d5	2410			"	3330		72	16-126
Surrogate: 2-Fluorobiphenyl	2560			"	3330		77	28-134
Surrogate: 2,4,6-Tribromophenol	4100			"	5000		82	51-144
Surrogate: Terphenyl-d14	3240			"	3330		97	64-119
Laboratory Control Sample (308025	53-BS1)				Prepared:	08/14/03	Analyze	d: 08/21/03
Acenaphthene	2840	8.7	330	ug/kg	3330		85	34-114
4-Chloro-3-methylphenol	2970	11	660	"	3330		89	24-118
2-Chlorophenol	2580	16	330	"	3330		77	29-101
1,4-Dichlorobenzene	2480	15	330	"	3330		74	25-104
2,4-Dinitrotoluene	3540	20	330	"	3330		106	42-116
4-Nitrophenol	3000	23	1700	"	3330		90	31-109
N-Nitrosodi-n-propylamine	2590	15	330	"	3330		78	23-117
Pentachlorophenol	3130	12	1700	"	3330		94	34-114
Phenol	2360	12	330	"	3330		71	20-105
Pyrene	3610	12	330	"	3330		108	30-124
1,2,4-Trichlorobenzene	2810	15	330	"	3330		84	28-112
Surrogate: 2-Fluorophenol	3450			"	5000		69	11-120
Surrogate: Phenol-d6	3580			"	5000		72	16-130
Surrogate: Nitrobenzene-d5	2670			"	3330		80	16-126
Surrogate: 2-Fluorobiphenyl	2820			"	3330		85	28-134
Surrogate: 2,4,6-Tribromophenol	4870			"	5000		97	51-144
Surrogate: Terphenyl-d14	3600			"	3330		108	64-119
Matrix Spike (3080253-MS1)	Sour	ce: P30804	7-09		Prepared:	08/14/03	Analyze	d: 08/21/03
Acenaphthene	2800	8.7	330	ug/kg	3330	ND	84	30-110
4-Chloro-3-methylphenol	2920	11	660	"	3330	ND	88	27-109
2-Chlorophenol	2470	16	330	"	3330	ND	74	24-98
1,4-Dichlorobenzene	2290	15	330	"	3330	ND	69	24-89
2,4-Dinitrotoluene	3410	20	330	"	3330	ND	102	35-110
4-Nitrophenol	2940	23	1700	"	3330	ND	88	20-110
N-Nitrosodi-n-propylamine	2600	15	330	"	3330	ND	78	23-109
Pentachlorophenol	2730	12	1700	"	3330	ND	82	25-123
Phenol	2310	12	330	"	3330	ND	69	19-100
Pyrene	3390	12	330	"	3330	ND	102	12-131

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P308047 **Reported:** 09/09/03 16:33

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 308025	53 - EPA	3550A	Sonication
--------------	----------	-------	------------

Matrix Spike (3080253-MS1)	Sou	rce: P308047	7-09		Prepared:	08/14/03	Analyze	d: 08/21/03		
1,2,4-Trichlorobenzene	2680	15	330	ug/kg	3330	ND	80	17-110		
Surrogate: 2-Fluorophenol	3300			"	5000		66	11-120		
Surrogate: Phenol-d6	3490			"	5000		70	16-130		
Surrogate: Nitrobenzene-d5	2600			"	3330		78	16-126		
Surrogate: 2-Fluorobiphenyl	2630			"	3330		79	28-134		
Surrogate: 2,4,6-Tribromophenol	4720			"	5000		94	51-144		
Surrogate: Terphenyl-d14	3380			"	3330		102	64-119		
Matrix Spike Dup (3080253-MSD1)	Sou	rce: P308047	7-09		Prepared:	08/14/03	Analyze	d: 08/21/03		
Acenaphthene	2820	8.7	330	ug/kg	3330	ND	85	30-110	0.7	26
4-Chloro-3-methylphenol	2890	11	660	"	3330	ND	87	27-109	1	21
2-Chlorophenol	2460	16	330	"	3330	ND	74	24-98	0.4	27
1,4-Dichlorobenzene	2330	15	330	"	3330	ND	70	24-89	2	25
2,4-Dinitrotoluene	3400	20	330	"	3330	ND	102	35-110	0.3	15
4-Nitrophenol	2930	23	1700	"	3330	ND	88	20-110	0.3	23
N-Nitrosodi-n-propylamine	2570	15	330	"	3330	ND	77	23-109	1	31
Pentachlorophenol	2620	12	1700	"	3330	ND	79	25-123	4	43
Phenol	2300	12	330	"	3330	ND	69	19-100	0.4	21
Pyrene	3450	12	330	"	3330	ND	104	12-131	2	26
1,2,4-Trichlorobenzene	2700	15	330	"	3330	ND	81	17-110	0.7	30
Surrogate: 2-Fluorophenol	3240			"	5000		65	11-120		
Surrogate: Phenol-d6	3460			"	5000		69	16-130		
Surrogate: Nitrobenzene-d5	2590			"	3330		78	16-126		
Surrogate: 2-Fluorobiphenyl	2720			"	3330		82	28-134		
Surrogate: 2,4,6-Tribromophenol	4580			"	5000		92	51-144		
Surrogate: Terphenyl-d14	3360			"	3330		101	64-119		

Environmental Resources Management Project: Aerojet RI/FS P308047
2525 Natomas Park Drive, Suite 350 Project Number: N/A Reported:
Sacramento CA, 95833 Project Manager: Bruce Lewis 09/09/03 16:33

Notes and Definitions

В	Analyte is found in the associated blank as well as in the sample.
HT-03	This sample was extracted beyond the EPA recommended holding time. The results may still be useful for their intended purpose.
J	Estimated value.
Q-LIM	The percent recovery was outside of the control limits. The samples results may still be useful for their intended purpose.
QM-06	Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.
QM-07	The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM-4X	The spike recovery was outside of control limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
QR-07	The RPD was outside control limits. The results may still be useful for their intended purpose.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
S-LIM	The surrogate recovery was outside control limits. The result may still be useful for its intended purpose.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

7.67.35 v. 4		- Salanga	a	NK	3RD COPY - SAMPLER: PINK	AS - Adc	3RD C	DRY: YELLOW	2ND COPY - LABORATORY: YELLOW		ORIGINAL - ENVIRONMENTAL OPERATIONS: WHITE	- ENVIRONMENT	ORIGINAL
	-68 -68 -58	463	P			8		A	8-40		N		COMMENIA
8-403 1230		133			Ø			2	×14103	XX 22	S Value	emicals	8
LABORATORY DELIVERED TO:		<	IATURE)	(S)GA	RECEIVED BY LABORATORY BY	ED BY LA	RECEN		DAŤE/TÍME		RE)	RELINOUSHED BY: (SIGNATURE)	RELINGUE
& 163 (530	\	HS PR	Ryn H	200	McCall	M. C		03 153c	8/1/	CEUCh	20/1	MELINACISMED BY, SOMM, UNE	Circinacion
		CUOKS	100	price 81	Dan III	TERREY: S	BECE		ON TECTIME		VNXEWVVO	INDI IISHEDBA: YSKISHI INDI	REI INCI IIS
TOTAL NO. OF SAMPLE CONTAINERS:					RECEIVED BY: (SIGNATURE)	VED BY: //S	RECEI	7407	DATE/TIME			HELINOUISHED BY: (SIGNATURE	HELINGUIS
						2		AND THE PROPERTY OF THE PROPER					TOTALS
									/ /			2 Q	
	3.4 00	ATURE	r temper	COOLER					/ /			2 P	
	CT	NOT INTA							/ /			2 0	Consums
		MSTVTS		COOLER					/ /	-		N Z	
						uounysantas.	*		/ /			2	
			- ducore			Martin algebrasisco			/ /			2	
									/ /			N X	
									/ /	No. of Contract of		2 J	d
9		$\stackrel{\bigcirc}{\times}$	✓	\1	\geq	28	2%: brass	1300	08/01/03	5	320-5507-45	2 1 320	É
8		X			2	系 20	25.25.2 25.0.2	1205	8/01/03	80	D-5807-40	2 H 321	
7						W	12:21	1150	08/01/03	1	0~1307406	2 G 32	
6		\$	X		SM	- ·	50% 50% 50% 50%	199	08/01/03	55	D-SB370-35	2 F 32	
5		\times			35.	7)	100 K	1	201012	58	30,4807-35	╀	
4		$\stackrel{\frown}{\times}$	<u> </u>	<i>-</i>	SM	1 5	1.80	<u> </u>	08/01/08	30 0	20-5807-30	O	
(x		\hat{X}			6/W	0	12X611	1 Sact	05/01/03	9	0/87-0	C 732	
2		X	Δ		C	26	でなる。こと	0950	08/01/03	5	J-5807-5	2 B 321	
7308047-01					175	_ @	25 014 1. 072	5400	28/01/03	0	D-5B02-10	2 A 361	
REMARKS	LABO	Tr	PER	BNA		-	TYPE OF CONTAINER	TIME	DATE MM/DD/YY	DEPTH (FT.)	FIELD SAMPLE NO.	E ID	COC SAMPLE ID
	PRATORY	ocs PH	CHLORATE	's EPA	TYPE (USO	SAMPLE (and.	Mil	SAMPLERS (SIGNATURE)	SAMPLE
	QA/QC	801	EDL-SV	Water to be on the same						C	AUGER HOLE NO.	OCCITICE OF ITE INC.	0000
svocs analysis		COLUMN TO SERVICE STATE OF THE PERSON SERVICE STATE				Photograph and the second seco		R	0.12vt	2	(Ara)	SITE NO.	5
report TICS in	<u> </u>	IPLE ANALYSES	TED SAMPLE	REQUESTED	\Box					R NO:	0	Ö	E.T.R. NO:
No 1112			Record	Re	Š	Ö	Custody	9	Chain				2
		•		J	•	ı)	.			Ö	SENCORP	

7.67.35 v. 4	8-403/600		2	ER: PINK	3RD COPY – SAMPLER: PINK	3RD COP)RY: <i>YELLOW</i>	2ND COPY – LABORATORY: <i>YELLOW</i>	and the second	ORIGINAL - ENVIRONMENTAL OPERATIONS: WHITE	AL - ENVIRONMEN	ORIGIN
250	403 12	Sp.			/			7-8-10-24	, Date		James	Compension
	91103 153	X.	7 180	Gessen	B	Mom	103 1530		F'	le Seeme		C L
LABORATORY DELIVERED TO:	- 10		(SIGNATURE)	8	RECEIVED BY LABORATORY BY:	RECEIVED	TO A STATE OF THE PERSON OF TH	DATE/TIME			RELINOGISHED BY: (SIGNATURE,	RELINO
METHOD OF SHIPMENT:	ell/exión	1	1		NECEIVED BY . (SIGNATIONE)	1	03 1407	08/21/03	Ď	Meline	ANDTHA PROPERTY	3
WITTING OF CHICAGO		7	Surve	7000	SINED BY: ISIONA	BECEIWE BECEIWE	103 1451	CECE 01/3/	2/10	NUMIN	IISHED BY: /SKSWA FT	BEI IN
TOTAL NO. OF SAMPLE CONTAINERS:				TURE)	RECEIVED BY: (SIGNATURE)	RECEIVED		DATE/TIM		J	BELINQUISHED BY: (SIGNATURE	RELINO
			ang der lan kin kin kin kin kin kin kin kin kin ki		7	. 1					LS	TOTALS
								/ /	- Marian		<u></u>	<u>`</u>
				Andreas Commencer Commencer		MPERAIUKE	OOLER TEM	/ / 00				
	one and decision of		*********	Special series	70			/ /			0	
				errore)	TOATIN	CALL STREET		-			` ` Z_	
				munang munang	MTA	STATS AGOLS		/ /			 	
		J.						/ /				
								/ /			<u></u>	
								/ /				
,								/ /				
								/ //			` `	
								/ /			1 1 G	b
								/ /			<u></u>	
								/ /			m	
								/ /				
								/ /				
		X			ZS.	1 SS#22	- WOMEN COM	07/31/03	40	360-5620-40	11 B 366	duma
91-1703081		X			WS Z		1406 7	07 131 103	40 1	D-5602-40	11 A 20	
REMARKS	LABO	Sl	-	VOL/ BNA		CONTAINER 4	TIME	DATE MM/DD/YY	DEPTH (FT.)	FIELD SAMPLE NO.	COC SAMPLE ID	SAN
	ORATORY	loc by	ALS <i>EPA</i>	ATILE ORGAN	TYPE (US	F SAMPLE (CELE	Wind	RED PEMIAN	LERS (SIGNATURE)	SAMPLERS
	QA/QC	827			NATIONAL PROPERTY OF THE PROPE	CONTAIN				-		
delta bldg. retingeator		ර	W-006	A 8240	NO. CONT. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO	1500			5	ALIGER HOLE NO:	SOURCE SITE NO:	SOUR
stored overnight in	ANALYSES	SAMPLE ANA	REQUESTED S	REQ					R NO:	WORK ORDER NO:	NO:	E.T.R. NO:
		<u>ā</u>	Record		00	Custody	0					7
		•		ı	ı		1			Ō	JENCORP	

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

			1					+/-2°C)	requiring thermal pres.:4+/-2°C)
6	1					1			
			,	1				mples	(Acceptance range for samples
				1				J.A.	12. Temp Rec. at Lab:
								Yes/No*	used:
	1			1/) (11. Proper Preservatives
				\ \				Yes/ No*	hold time:
				/				uin (10. Sample received within
				/				/Yes / No*	labels agree?
					6				reports and sample
			6	. /				ic i	custody reports, traffic
									9. Does information on
								Leaking*	
								Infact/Broken*/	8. Sample Condition:
							/	on Chain-of-Custody	
					and a			Listed / Not Listed	7. Sample IDs:
		_		funda I	< < 5.			Present / Absent	6. Sample Labels:
		and the second	5	2xNC	ð				5. Airbill #:
		***************************************	5	500 Hno3, 2x44	S867-45F			Present / Absent	
			-	UC	SBN 35			Airbill / Sticker	4. Airbill:
			ga wali galay kapan na	2xMC	, 4 35			Present / Absent	Packing List:
			paz előlészi feltáplása	NC	30				Traffic Reports or
		SCOON STANSON			0			Present / Absent*	2. Chain-of-Custody
		Conve lla	pan interescent and	2× MC	84)-8807-5			Intact / Broken*	
		7	$\langle \rangle$	Z C	361-3B02-1D			Present / Absent	 Custody Seal(s)
CONDITION (ETC.)	COND	MATRIX SAMPLED	MATRIX	DESCRIPTION	CLIENT ID	#	SAMPLE #	>	
		DATE	SAMPLE				LAB	CIRCLE THE APPROPRIATE RESPONSE	CIRCLE THE APPR
YES/NO	urposes:	regulatory purposes:			. A.			-	
) for	(Wastewater) for		8-5-03	LOG IN DATE:		7	0200	WORKORDER:
YES/NO	urposes:	regulatory purposes:		1600	TIME Received at Lab: _				REC. BY (PRINT)
	ater) for	(Drinking water) for	_	8-403	DATE Received at Lab:			Herotet	CLIENT NAME:

Sample Receipt Log Revision 2.1 (11/10/00) Replaces Revision 2 (11/06/00) Effective 11/12/00

*If Circled, contact Project Manager and attach record of resolution.

Page __

of

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

d attach record of resolution.	*If Circled, contact Project Manager and attach record of resolution.	*If Circl		
			/-2°C) Yes / No*	requiring thermal pres.:4+/-2°C)
			ples	(Acceptance range for samples
			2	12. Temp Rec. at Lab:
			(Yes) No*	used:
)\(Proper Preservatives
			(Yes) No*	hold time:
7			<u>-</u>)(10. Sample received within
			Yes No*	labels agree?
				reports and sample
				custody reports, traffic
				9. Does information on
			Leaking*	
1			(Intact / Broken* /	8. Sample Condition:
			on Chain-of-Custody	
			Listed/ Not Listed	7. Sample IDs:
7			Present/ Absent	6. Sample Labels:
				5. Airbill #:
			Present / Absent	
			Airbill / Sticker	4. Airbill:
			Present / (Absent)	Packing List:
			(3. Traffic Reports or
	1		(Present) Absent*	2. Chain-of-Custody
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	362-5302040		Intact / Broken*	
S 73103	N 04-2085-09E	is see	Present / Absent)	1. Custody Seal(s)
S	CLIENT ID	SAMPLE #		
SAMPLE DATE		LAB	CIRCLE THE APPROPRIATE RESPONSE	CIRCLE THE APPRO
regulatory purposes: YES/NO			c	
	LOG IN DATE:		7703069	WORKORDER:
regulatory purposes: YES/NO	TIME Received at Lab:			REC BY (PRINT)
(Drinking water) for	DATE Received at Lab: &-	-	front	CLIENT NAME:

Sample Receipt Log
Revision 2.1 (11/10/00)
Revision 2.1 (11/10/00)
Replaces Revision 2 (11/06/00)
Effective 11/12/00

Page _____ of ___